Suppr超能文献

一种基于自然语言处理的新颖方法,用于评估各国在双边投资条约条款传播方面的影响力。

An NLP-based novel approach for assessing national influence in clause dissemination across bilateral investment treaties.

作者信息

Uddin Shahadat, Lu Haohui, Alschner Wolfgang, Patay Dori, Frank Nicholas, Gomes Fabio S, Thow Anne Marie

机构信息

School of Project Management, Faculty of Engineering, The University of Sydney, Forest Lodge, Australia.

Common Law Section, Faculty of Law, University of Ottawa, Ottawa, Canada.

出版信息

PLoS One. 2024 Mar 12;19(3):e0298380. doi: 10.1371/journal.pone.0298380. eCollection 2024.

Abstract

International investment agreements (IIAs) promote foreign investment. However, they can undermine crucial health programs, creating a dilemma for governments between corporate and public health interests. For this reason, including clauses that safeguard health has become an essential practice in IIAs. According to the current literature, some countries have played a pivotal role in leading this inclusion, while others follow the former ones. However, the existing literature needs a unique approach that can quantify the influence strength of a country in disseminating clauses that explicitly mention health provisions to others. Following an NLP (Natural Language Processing)-based text similarity analysis of Bilateral Investment Treaties (BITs), this study proposes a metric, 'Influence' (INF), which provides insights into the role of different countries or regions in the propagation of IIA texts among BITs. We demonstrate a comprehensive application of this metric using a large agreement dataset. Our findings from this application corroborate the evidence in the current literature, supporting the validity of the proposed metric. According to the INF, Germany, Canada, and Brazil emerged as the most influential players in defensive, neutral, and offensive health mentions, respectively. These countries wield substantial bargaining power in international investment law and policy, and their innovative approaches to BITs set a path for others to follow. These countries provide crucial insights into the direction and sources of influence of international investment regulations to safeguard health. The proposed metric holds substantial usage for policymakers and investors. This can help them identify vital global countries in IIA text dissemination and create new policy guidelines to safeguard health while balancing economic development and public health protection. A software tool based on the proposed INF measure can be found at https://inftool.com/.

摘要

国际投资协定(IIAs)促进外国投资。然而,它们可能会破坏关键的卫生项目,使政府在企业利益和公共卫生利益之间陷入两难境地。因此,在国际投资协定中纳入保障健康的条款已成为一项基本做法。根据现有文献,一些国家在引领这一纳入过程中发挥了关键作用,而其他国家则追随前者。然而,现有文献需要一种独特的方法来量化一个国家在向其他国家传播明确提及卫生条款的条款方面的影响力强度。通过对双边投资条约(BITs)进行基于自然语言处理(NLP)的文本相似性分析,本研究提出了一个指标“影响力”(INF),该指标提供了对不同国家或地区在双边投资条约之间国际投资协定文本传播中所起作用的见解。我们使用一个大型协定数据集展示了该指标的全面应用。我们从该应用中得出的结果证实了现有文献中的证据,支持了所提出指标的有效性。根据“影响力”指标,德国、加拿大和巴西分别在防御性、中立性和进攻性卫生提及方面成为最具影响力的国家。这些国家在国际投资法律和政策方面拥有巨大的议价能力,它们在双边投资条约方面的创新方法为其他国家树立了榜样。这些国家为保障健康的国际投资法规的影响方向和来源提供了关键见解。所提出的指标对政策制定者和投资者具有重要用途。这可以帮助他们识别在国际投资协定文本传播中至关重要的全球国家,并制定新的政策指导方针,以在平衡经济发展和公共卫生保护的同时保障健康。基于所提出的“影响力”指标的软件工具可在https://inftool.com/上找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e497/10931470/1c9b2ca2f678/pone.0298380.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验