Suppr超能文献

识别影响带有健康保障措施的双边投资条约发展的因素:一种基于机器学习的链接预测方法。

Identifying the factors influencing the development of bilateral investment treaties with health safeguards: a Machine Learning-based link prediction approach.

作者信息

Lu Haohui, Thow Anne Marie, Patay Dori, Tissaoui Takwa, Frank Nicholas, Rippin Holly, Hoang Tien Dat, Gomes Fabio, Alschner Wolfgang, Uddin Shahadat

机构信息

Faculty of Engineering, The University of Sydney, 21 Ross Street, Forest Lodge, NSW 2037 Australia.

Leeder Centre for Health Policy, Economics and Data, The University of Sydney, 17 Johns Hopkins D, Camperdown, NSW 2050 Australia.

出版信息

J Comput Soc Sci. 2025;8(1):8. doi: 10.1007/s42001-024-00341-z. Epub 2024 Dec 5.

Abstract

A network analysis approach, complemented by machine learning (ML) techniques, is applied to analyse the factors influencing Bilateral Investment Treaties (BITs) at the country level. Using the Electronic Database of Investment Treaties, BITs with health safeguards from 167 countries were charted, resulting in 534 connections with countries as nodes and their BITs as edges. Network analysis found that, on average, a country established BITs with six other nations. Additionally, we used node embedding techniques to generate features from the network, such as the Jaccard coefficient, resource allocation, and Adamic Adar for downstream link prediction. This study employed five tree-based ML models to predict future BIT formations with health inclusion. The eXtreme Gradient Boosting model proved to be superior, achieving a 64.02% accuracy rate. Notably, the Common Neighbor centrality feature and the Capital Account Balance Ratio emerged as influential factors in creating new BITs with health inclusions. Beyond economic considerations, our study highlighted a vital intersection: the nexus between BITs, economic growth, and public health policies. In essence, this research underscores the importance of safeguarding public health in BITs and showcases the potential of ML in understanding the intricacies of international treaties.

摘要

一种辅以机器学习(ML)技术的网络分析方法被应用于分析国家层面影响双边投资条约(BITs)的因素。利用《投资条约电子数据库》,绘制了167个设有健康保障条款的双边投资条约,形成了一个以国家为节点、双边投资条约为边的包含534个连接的网络。网络分析发现,平均而言,一个国家与其他六个国家签订双边投资条约。此外,我们使用节点嵌入技术从网络中生成特征,如用于下游链接预测的杰卡德系数、资源分配和亚当斯·阿达系数。本研究采用了五种基于树的机器学习模型来预测未来包含健康条款的双边投资条约的形成。极端梯度提升模型被证明是最优的,准确率达到64.02%。值得注意的是,共同邻居中心性特征和资本账户余额比率成为影响签订包含健康条款新双边投资条约的因素。除经济因素外,我们的研究突出了一个重要的交叉点:双边投资条约、经济增长和公共卫生政策之间的联系。本质上,本研究强调了在双边投资条约中保障公众健康的重要性,并展示了机器学习在理解国际条约复杂性方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad39/11621195/84a9212a0173/42001_2024_341_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验