Suppr超能文献

35Si2MnCr2Ni3MoV钢在不同奥氏体化温度下马氏体分级组织与力学性能的变化规律

The Variation Patterns of the Martensitic Hierarchical Microstructure and Mechanical Properties of 35Si2MnCr2Ni3MoV Steel at Different Austenitizing Temperatures.

作者信息

Wu Zhipeng, Yang Chao, Chen Guangyao, Li Yang, Cao Xin, Cao Pengmin, Dong Han, Hu Chundong

机构信息

School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.

Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314100, China.

出版信息

Materials (Basel). 2024 Feb 28;17(5):1099. doi: 10.3390/ma17051099.

Abstract

This study investigates the influence of varying austenitizing temperatures on the microstructure and mechanical properties of 35Si2MnCr2Ni3MoV steel, utilizing Charpy impact testing and microscopic analysis techniques such as scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The findings reveal that optimal combination of strength and toughness is achieved at an austenitizing temperature of 980 °C, resulting in an impact toughness of 67.2 J and a tensile strength of 2032 MPa. The prior austenite grain size initially decreases slightly with increasing temperature, then enlarges significantly beyond 1100 °C. The martensite blocks' and packets' structures exhibit a similar trend. The proportion of high-angle grain boundaries, determined by the density of the packets, peaks at 980 °C, providing maximal resistance to crack propagation. The amount of retained austenite increases noticeably after 980 °C; beyond 1200 °C, the coarsening of packets and a decrease in density reduce the likelihood of trapping retained austenite. Across different austenitizing temperatures, the steel demonstrates superior crack initiation resistance compared to crack propagation resistance, with the fracture mode transitioning from ductile dimple fracture to quasi-cleavage fracture as the austenitizing temperature increases.

摘要

本研究利用夏比冲击试验以及扫描电子显微镜(SEM)和电子背散射衍射(EBSD)等微观分析技术,研究了不同奥氏体化温度对35Si2MnCr2Ni3MoV钢的微观结构和力学性能的影响。研究结果表明,在980℃的奥氏体化温度下可实现强度和韧性的最佳组合,冲击韧性为67.2 J,抗拉强度为2032 MPa。原始奥氏体晶粒尺寸最初随温度升高略有减小,然后在超过1100℃时显著增大。马氏体块和板条的结构呈现出类似的趋势。由板条密度决定的大角度晶界比例在980℃时达到峰值,对裂纹扩展提供最大阻力。980℃后残余奥氏体量显著增加;超过1200℃时,板条粗化和密度降低减少了捕获残余奥氏体的可能性。在不同的奥氏体化温度下,与裂纹扩展阻力相比,该钢表现出优异的抗裂纹萌生能力,随着奥氏体化温度的升高,断裂模式从韧性韧窝断裂转变为准解理断裂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83bb/10933981/1cb0e1775cda/materials-17-01099-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验