文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于高效光催化和制氢的碳和硫化镉共修饰纳米二氧化钛

C- and CdS-Co-Modified Nano-Titanium Dioxide for Highly Efficient Photocatalysis and Hydrogen Production.

作者信息

Zhang Meifang, Liang Xiangfei, Gao Yang, Liu Yi

机构信息

Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330031, China.

School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.

出版信息

Materials (Basel). 2024 Mar 5;17(5):1206. doi: 10.3390/ma17051206.


DOI:10.3390/ma17051206
PMID:38473677
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10934443/
Abstract

The inherent properties of TiO, including a wide band gap and restricted spectral response range, hinder its commercial application and its ability to harness only 2-3% of solar energy. To address these challenges and unlock TiO's full potential in photocatalysis, C- and CdS-co-modified nano-titanium dioxide has been adopted in this work to reduce the band gap, extend the absorption wavelength, and control photogenerated carrier recombination, thereby enhancing TiO's light-energy-harnessing capabilities and hydrogen evolution capacity. Using the sol-gel method, we successfully synthesized CdS-C/TiO composite nanomaterials, harnessing the unique strengths of CdS and C. The results showed a remarkable average yield of 34.025 μmol/h for TiO co-modified with CdS and C, representing a substantial 17-fold increase compared to pure CdS. Simultaneously, the average hydrogen generation of C-modified CdS surged to 5.648 μmol/h, a notable two-fold improvement over pure CdS. This work opens up a new avenue for the substantial improvement of both the photocatalytic degradation efficiency and hydrogen evolution capacity, offering promise of a brighter future in photocatalysis research.

摘要

二氧化钛(TiO)的固有特性,包括宽带隙和受限的光谱响应范围,阻碍了其商业应用以及仅利用2%-3%太阳能的能力。为了应对这些挑战并释放TiO在光催化方面的全部潜力,本研究采用了碳(C)和硫化镉(CdS)共改性的纳米二氧化钛,以减小带隙、延长吸收波长并控制光生载流子复合,从而提高TiO的光能利用能力和析氢能力。我们采用溶胶-凝胶法,成功合成了CdS-C/TiO复合纳米材料,利用了CdS和C的独特优势。结果表明,CdS和C共改性的TiO平均产率显著,达到34.025 μmol/h,与纯CdS相比大幅提高了17倍。同时,C改性的CdS平均析氢量飙升至5.648 μmol/h,比纯CdS有显著的两倍提升。这项工作为大幅提高光催化降解效率和析氢能力开辟了一条新途径,为光催化研究带来了更光明的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/4beb39a5f360/materials-17-01206-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/6d71c4685783/materials-17-01206-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/28c71d78fbff/materials-17-01206-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/ee048b035f54/materials-17-01206-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/4c987e7943f3/materials-17-01206-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/4beb39a5f360/materials-17-01206-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/6d71c4685783/materials-17-01206-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/28c71d78fbff/materials-17-01206-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/ee048b035f54/materials-17-01206-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/4c987e7943f3/materials-17-01206-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c38/10934443/4beb39a5f360/materials-17-01206-g005.jpg

相似文献

[1]
C- and CdS-Co-Modified Nano-Titanium Dioxide for Highly Efficient Photocatalysis and Hydrogen Production.

Materials (Basel). 2024-3-5

[2]
Recent Progress of Ion-Modified TiO for Enhanced Photocatalytic Hydrogen Production.

Molecules. 2024-5-16

[3]
Synthesis of Polyaniline Supported CdS/CdS-ZnS/CdS-TiO Nanocomposite for Efficient Photocatalytic Applications.

Nanomaterials (Basel). 2022-4-14

[4]
Study on the preparation of CdS/TiO corn straw biochar composite materials for photocatalytic reduction of CO and collaborative H production.

Environ Sci Pollut Res Int. 2024-7

[5]
C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution.

ACS Appl Mater Interfaces. 2015-2-18

[6]
Enhanced photocatalytic hydrogen generation over ZrO2-TiO2-CdS hybrid structure.

J Colloid Interface Sci. 2013-8-2

[7]
Mixed Titanium Oxide Strategy for Enhanced Photocatalytic Hydrogen Evolution.

ACS Appl Mater Interfaces. 2019-5-22

[8]
Effective Photocatalytic Hydrogen Evolution by Cascadal Carrier Transfer in the Reverse Direction.

ACS Omega. 2018-10-8

[9]
Study on preparation of UV-CDs/Zeolite-4A/TiO composite photocatalyst coupled with ultraviolet-irradiation and their application of photocatalytic degradation of dyes.

J Environ Manage. 2024-3

[10]
Construction of Z-scheme CdS/Ag/TiO NTs photocatalysts for photocatalytic dye degradation and hydrogen evolution.

Spectrochim Acta A Mol Biomol Spectrosc. 2022-8-5

本文引用的文献

[1]
TiO/CdS composite photocathode improves the performance and degradation of wastewater in microbial fuel cells.

Anal Sci Adv. 2022-4-5

[2]
Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production.

Angew Chem Int Ed Engl. 2023-6-19

[3]
Modulation of thermal conductivity of single-walled carbon nanotubes by fullerene encapsulation: the effect of vacancy defects.

Phys Chem Chem Phys. 2023-3-15

[4]
Photocatalytic CO reduction with aminoanthraquinone organic dyes.

Nat Commun. 2023-2-25

[5]
CdS-Modified TiO Nanotubes with Heterojunction Structure: A Photoelectrochemical Sensor for Glutathione.

Nanomaterials (Basel). 2022-12-20

[6]
Photocatalytic Reduction of Carbon Dioxide on TiO Heterojunction Photocatalysts-A Review.

Materials (Basel). 2022-1-26

[7]
Fullerene as an additive for increasing the efficiency of organic solar cells to more than 17.

J Colloid Interface Sci. 2021-11

[8]
Efficient Charge Carrier Separation in l-Alanine Acids Derived N-TiO Nanospheres: The Role of Oxygen Vacancies in Tetrahedral Ti Sites.

Nanomaterials (Basel). 2019-5-5

[9]
Fullerenes - how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions.

Chem Soc Rev. 2018-2-5

[10]
Heterojunction Photocatalysts.

Adv Mater. 2017-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索