Suppr超能文献

用于改善成肌细胞引导的含胶原蛋白的等离子体活化聚二甲基硅氧烷微结构图案

Plasma-Activated Polydimethylsiloxane Microstructured Pattern with Collagen for Improved Myoblast Cell Guidance.

作者信息

Slepičková Kasálková Nikola, Juřicová Veronika, Fajstavr Dominik, Frýdlová Bára, Rimpelová Silvie, Švorčík Václav, Slepička Petr

机构信息

Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic.

Department of Biochemistry and Microbiology, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic.

出版信息

Int J Mol Sci. 2024 Feb 28;25(5):2779. doi: 10.3390/ijms25052779.

Abstract

We focused on polydimethylsiloxane (PDMS) as a substrate for replication, micropatterning, and construction of biologically active surfaces. The novelty of this study is based on the combination of the argon plasma exposure of a micropatterned PDMS scaffold, where the plasma served as a strong tool for subsequent grafting of collagen coatings and their application as cell growth scaffolds, where the standard was significantly exceeded. As part of the scaffold design, templates with a patterned microstructure of different dimensions (50 × 50, 50 × 20, and 30 × 30 μm) were created by photolithography followed by pattern replication on a PDMS polymer substrate. Subsequently, the prepared microstructured PDMS replicas were coated with a type I collagen layer. The sample preparation was followed by the characterization of material surface properties using various analytical techniques, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). To evaluate the biocompatibility of the produced samples, we conducted studies on the interactions between selected polymer replicas and micro- and nanostructures and mammalian cells. Specifically, we utilized mouse myoblasts (C2C12), and our results demonstrate that we achieved excellent cell alignment in conjunction with the development of a cytocompatible surface. Consequently, the outcomes of this research contribute to an enhanced comprehension of surface properties and interactions between structured polymers and mammalian cells. The use of periodic microstructures has the potential to advance the creation of novel materials and scaffolds in tissue engineering. These materials exhibit exceptional biocompatibility and possess the capacity to promote cell adhesion and growth.

摘要

我们专注于聚二甲基硅氧烷(PDMS)作为复制、微图案化及构建生物活性表面的基质。本研究的新颖之处在于将微图案化的PDMS支架进行氩等离子体处理,其中等离子体是后续接枝胶原蛋白涂层并将其用作细胞生长支架的有力工具,其效果远超标准。作为支架设计的一部分,通过光刻法制作具有不同尺寸(50×50、50×20和30×30μm)图案化微观结构的模板,随后在PDMS聚合物基底上进行图案复制。接着,将制备好的微结构化PDMS复制品涂上I型胶原蛋白层。制备样品后,使用包括扫描电子显微镜(SEM)、能量色散X射线光谱(EDS)和X射线光电子能谱(XPS)在内的各种分析技术对材料表面性质进行表征。为评估所制备样品的生物相容性,我们对选定的聚合物复制品以及微观和纳米结构与哺乳动物细胞之间的相互作用进行了研究。具体而言,我们使用了小鼠成肌细胞(C2C12),我们的结果表明,我们实现了优异的细胞排列,并形成了细胞相容性表面。因此,本研究结果有助于增强对结构化聚合物与哺乳动物细胞之间表面性质及相互作用的理解。周期性微观结构的使用有潜力推动组织工程中新型材料和支架的创建。这些材料具有出色的生物相容性,并具备促进细胞黏附和生长的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9245/10932060/7ada8f7d25c2/ijms-25-02779-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验