Hedhili Fekhra, Khan Hukam, Ullah Furqan, Sohail Mohammad, Khan Rajwali, Alsalmi Omar H, Alrobei Hussein, Abualnaja Khamael M, Alosaimi Ghaida, Albaqawi Hissah Saedoon
Department of Physics, College of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia.
Department of Physics, Faculty of Science, Al Manar University, 1060 Tunis, Tunisia.
Molecules. 2024 Feb 22;29(5):961. doi: 10.3390/molecules29050961.
In the quest for advanced materials with diverse applications in optoelectronics and energy storage, we delve into the fascinating world of halide perovskites, focusing on SiAuF and SiCuF. Employing density functional theory (DFT) as our guiding light, we conduct a comprehensive comparative study of these two compounds, unearthing their unique structural, electronic, elastic, and optical attributes. Structurally, SiAuF and SiCuF reveal their cubic nature, with SiCuF demonstrating superior stability and a higher bulk modulus. Electronic investigations shed light on their metallic behavior, with Fermi energy levels marking the boundary between valence and conduction bands. The band structures and density of states provide deeper insights into the contributions of electronic states in both compounds. Elastic properties unveil the mechanical stability of these materials, with SiCuF exhibiting increased anisotropy compared to SiAuF. Our analysis of optical properties unravels distinct characteristics. SiCuF boasts a higher refractive index at lower energies, indicating enhanced transparency in specific ranges, while SiAuF exhibits heightened reflectivity in select energy intervals. Further, both compounds exhibit remarkable absorption coefficients, showcasing their ability to absorb light at defined energy thresholds. The energy loss function (ELF) analysis uncovers differential absorption behavior, with SiAuF absorbing maximum energy at 6.9 eV and SiCuF at 7.2 eV. Our study not only enriches the fundamental understanding of SiAuF and SiCuF but also illuminates their potential in optoelectronic applications. These findings open doors to innovative technologies harnessing the distinctive qualities of these halide perovskite materials. As researchers seek materials that push the boundaries of optoelectronics and energy storage, SiAuF and SiCuF stand out as promising candidates, ready to shape the future of these fields.
在寻求在光电子学和能量存储中有多种应用的先进材料的过程中,我们深入探索卤化物钙钛矿的迷人世界,重点关注SiAuF和SiCuF。以密度泛函理论(DFT)为指导,我们对这两种化合物进行了全面的比较研究,揭示了它们独特的结构、电子、弹性和光学属性。在结构上,SiAuF和SiCuF呈现出立方性质,其中SiCuF表现出更高的稳定性和更高的体积模量。电子研究揭示了它们的金属行为,费米能级标志着价带和导带之间的边界。能带结构和态密度为两种化合物中电子态的贡献提供了更深入的见解。弹性性质揭示了这些材料的机械稳定性,与SiAuF相比,SiCuF表现出更大的各向异性。我们对光学性质的分析揭示了不同的特性。SiCuF在较低能量下具有更高的折射率,表明在特定范围内具有更高的透明度,而SiAuF在选定的能量区间表现出更高的反射率。此外,两种化合物都表现出显著的吸收系数,展示了它们在特定能量阈值下吸收光的能力。能量损失函数(ELF)分析揭示了不同的吸收行为,SiAuF在6.9 eV处吸收最大能量而SiCuF在7.2 eV处吸收最大能量。我们的研究不仅丰富了对SiAuF和SiCuF的基本理解,还阐明了它们在光电子应用中的潜力。这些发现为利用这些卤化物钙钛矿材料的独特性质的创新技术打开了大门。随着研究人员寻找推动光电子学和能量存储边界的材料,SiAuF和SiCuF作为有前途的候选材料脱颖而出,准备塑造这些领域的未来。