Suppr超能文献

通过蒸汽诱导相分离制备的具有改善破乳和抗污染性能的两性离子特罗格碱微滤膜。

Zwitterionic Tröger's Base Microfiltration Membrane Prepared via Vapor-Induced Phase Separation with Improved Demulsification and Antifouling Performance.

作者信息

Wang Meng, Huang Tingting, Shan Meng, Sun Mei, Liu Shasha, Tang Hai

机构信息

School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.

出版信息

Molecules. 2024 Feb 25;29(5):1001. doi: 10.3390/molecules29051001.

Abstract

The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. The conventional application of zwitterionic compounds as surface modifiers is intricate and inefficient, adding complexity and length to the membrane preparation process, particularly on an industrial scale. To overcome these limitations, zwitterionic polymer, directly used as a main material, is an effective method. In this work, a novel zwitterionic polymer (TB)-zwitterionic Tröger's base (ZTB)-was synthesized by quaternizing Tröger's base (TB) with 1,3-propane sultone. The obtained ZTB is blended with TB to fabricate microfiltration (MF) membranes via the vapor-induced phase separation (VIPS) process, offering a strategic solution for separating emulsified oily wastewater. Atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle, and zeta potential measurements were employed to characterize the surface of ZTB/TB blended membranes, assessing surface morphology, charge, and hydrophilic/hydrophobic properties. The impact of varying ZTB levels on membrane surface morphology, hydrophilicity, water flux, and rejection were investigated. The results showed that an increase in ZTB content improved hydrophilicity and surface roughness, consequently enhancing water permeability. Due to the attraction of water vapor, the enrichment of zwitterionic segments was enriched, and a stable hydration layer was formed on the membrane surface. The hydration layer formed by zwitterions endowed the membrane with good antifouling properties. The proposed mechanism elucidates the membrane's proficiency in demulsification and the reduction in irreversible fouling through the synergistic regulation of surface charge and hydrophilicity, facilitated by electrostatic repulsion and the formation of a hydration layer. The ZTB/TB blended membranes demonstrated superior efficiency in oil-water separation, achieving a maximum flux of 1897.63 LMH bar and an oil rejection rate as high as 99% in the oil-water emulsion separation process. This study reveals the migration behavior of the zwitterionic polymer in the membrane during the VIPS process. It enhances our comprehension of the antifouling mechanism of zwitterionic membranes and provides guidance for designing novel materials for antifouling membranes.

摘要

分离膜的污染一直是导致膜性能下降的主要因素。提高膜的表面亲水性被证明是减轻水处理过程中膜污染的有效策略。两性离子聚合物(在聚合物链上含有等摩尔数均匀分布的阴离子和阳离子基团)已被广泛用作表面改性的最佳防污材料之一。两性离子化合物作为表面改性剂的传统应用复杂且低效,增加了膜制备过程的复杂性和长度,特别是在工业规模上。为克服这些限制,直接将两性离子聚合物用作主要材料是一种有效方法。在这项工作中,通过用1,3 - 丙烷磺内酯使特罗格碱(TB)季铵化合成了一种新型两性离子聚合物(TB) - 两性离子特罗格碱(ZTB)。将得到的ZTB与TB混合,通过气相诱导相分离(VIPS)过程制备微滤(MF)膜,为分离乳化含油废水提供了一种策略性解决方案。采用原子力显微镜(AFM)、扫描电子显微镜(SEM)、水接触角和zeta电位测量来表征ZTB/TB混合膜的表面,评估表面形态、电荷和亲水/疏水性质。研究了不同ZTB含量对膜表面形态、亲水性、水通量和截留率的影响。结果表明,ZTB含量的增加提高了亲水性和表面粗糙度,从而提高了水渗透性。由于水蒸气的吸引,两性离子链段富集,在膜表面形成了稳定的水化层。两性离子形成的水化层赋予膜良好的防污性能。所提出的机制阐明了膜通过表面电荷和亲水性的协同调节,借助静电排斥和水化层的形成,在破乳和减少不可逆污染方面的能力。ZTB/TB混合膜在油水分离中表现出优异的效率,在油水乳液分离过程中实现了1897.63 LMH bar的最大通量和高达99%的拒油率。本研究揭示了两性离子聚合物在VIPS过程中在膜内的迁移行为。它增强了我们对两性离子膜防污机制的理解,并为设计新型防污膜材料提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ad5/10934840/aa74fe4e325e/molecules-29-01001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验