Suppr超能文献

福尔马林固定和冷冻固定对人体组织拉曼光谱的影响及肿瘤库收录策略

Impact of Formalin- and Cryofixation on Raman Spectra of Human Tissues and Strategies for Tumor Bank Inclusion.

作者信息

Mirizzi Giulia, Jelke Finn, Pilot Michel, Klein Karoline, Klamminger Gilbert Georg, Gérardy Jean-Jacques, Theodoropoulou Marily, Mombaerts Laurent, Husch Andreas, Mittelbronn Michel, Hertel Frank, Kleine Borgmann Felix Bruno

机构信息

National Department of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg.

Saarland University Medical Center and Faculty of Medicine, 66421 Homburg, Germany.

出版信息

Molecules. 2024 Mar 6;29(5):1167. doi: 10.3390/molecules29051167.

Abstract

Reliable training of Raman spectra-based tumor classifiers relies on a substantial sample pool. This study explores the impact of cryofixation (CF) and formalin fixation (FF) on Raman spectra using samples from surgery sites and a tumor bank. A robotic Raman spectrometer scans samples prior to the neuropathological analysis. CF samples showed no significant spectral deviations, appearance, or disappearance of peaks, but an intensity reduction during freezing and subsequent recovery during the thawing process. In contrast, FF induces sustained spectral alterations depending on molecular composition, albeit with good signal-to-noise ratio preservation. These observations are also reflected in the varying dual-class classifier performance, initially trained on native, unfixed samples: The Matthews correlation coefficient is 81.0% for CF and 58.6% for FF meningioma and dura mater. Training on spectral differences between original FF and pure formalin spectra substantially improves FF samples' classifier performance (74.2%). CF is suitable for training global multiclass classifiers due to its consistent spectrum shape despite intensity reduction. FF introduces changes in peak relationships while preserving the signal-to-noise ratio, making it more suitable for dual-class classification, such as distinguishing between healthy and malignant tissues. Pure formalin spectrum subtraction represents a possible method for mathematical elimination of the FF influence. These findings enable retrospective analysis of processed samples, enhancing pathological work and expanding machine learning techniques.

摘要

基于拉曼光谱的肿瘤分类器的可靠训练依赖于大量的样本库。本研究利用手术部位的样本和肿瘤库,探讨了冷冻固定(CF)和福尔马林固定(FF)对拉曼光谱的影响。在神经病理学分析之前,用机器人拉曼光谱仪扫描样本。CF样本在峰值的光谱偏差、出现或消失方面无显著变化,但在冷冻过程中强度降低,在解冻过程中强度随后恢复。相比之下,FF会根据分子组成引起持续的光谱变化,尽管能很好地保持信噪比。这些观察结果也反映在不同的二类分类器性能上,最初是在未固定的原始样本上进行训练的:CF脑膜瘤和硬脑膜的马修斯相关系数为81.0%,FF为58.6%。对原始FF光谱和纯福尔马林光谱之间的光谱差异进行训练,可显著提高FF样本的分类器性能(74.2%)。CF由于其光谱形状一致,尽管强度降低,仍适用于训练全局多类分类器。FF在保持信噪比的同时,会引起峰值关系的变化,使其更适合于二类分类,如区分健康组织和恶性组织。纯福尔马林光谱减法是一种可能的数学方法,可消除FF的影响。这些发现有助于对已处理样本进行回顾性分析,加强病理工作并扩展机器学习技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验