Suppr超能文献

拉曼光谱术术中鉴别脑膜瘤与硬脑膜

Intraoperative discrimination of native meningioma and dura mater by Raman spectroscopy.

机构信息

Centre Hospitalier de Luxembourg, National Department of Neurosurgery, 1210, Luxembourg City, Luxembourg.

Medical Faculty, Saarland University, E66421, Homburg (Saar), Germany.

出版信息

Sci Rep. 2021 Dec 8;11(1):23583. doi: 10.1038/s41598-021-02977-7.

Abstract

Meningiomas are among the most frequent tumors of the central nervous system. For a total resection, shown to decrease recurrences, it is paramount to reliably discriminate tumor tissue from normal dura mater intraoperatively. Raman spectroscopy (RS) is a non-destructive, label-free method for vibrational analysis of biochemical molecules. On the microscopic level, RS was already used to differentiate meningioma from dura mater. In this study we test its suitability for intraoperative macroscopic meningioma diagnostics. RS is applied to surgical specimen of intracranial meningiomas. The main purpose is the differentiation of tumor from normal dura mater, in order to potentially accelerate the diagnostic workflow. The collected meningioma and dura mater samples (n = 223 tissue samples from a total of 59 patients) are analyzed under untreated conditions using a new partially robotized RS acquisition system. Spectra (n = 1273) are combined with the according histopathological analysis for each sample. Based on this, a classifier is trained via machine learning. Our trained classifier separates meningioma and dura mater with a sensitivity of 96.06 [Formula: see text] 0.03% and a specificity of 95.44 [Formula: see text] 0.02% for internal fivefold cross validation and 100% and 93.97% if validated with an external test set. RS is an efficient method to discriminate meningioma from healthy dura mater in fresh tissue samples without additional processing or histopathological imaging. It is a quick and reliable complementary diagnostic tool to the neuropathological workflow and has potential for guided surgery. RS offers a safe way to examine unfixed surgical specimens in a perioperative setting.

摘要

脑膜瘤是中枢神经系统最常见的肿瘤之一。为了实现完全切除,从而降低复发率,可靠地区分肿瘤组织和正常硬脑膜是至关重要的。拉曼光谱(RS)是一种用于分析生化分子振动的非破坏性、无标记方法。在微观层面上,RS 已经被用于区分脑膜瘤和硬脑膜。在这项研究中,我们测试了它在术中宏观脑膜瘤诊断中的适用性。RS 应用于颅内脑膜瘤的手术标本。主要目的是区分肿瘤和正常硬脑膜,以便潜在地加速诊断工作流程。采集的脑膜瘤和硬脑膜样本(共 59 名患者的 223 个组织样本)在未经处理的条件下使用新的部分机器人 RS 采集系统进行分析。对每个样本的光谱(n=1273)进行组合,并与相应的组织病理学分析进行比较。在此基础上,通过机器学习训练分类器。我们训练的分类器对脑膜瘤和硬脑膜的区分具有 96.06%的灵敏度[公式:见正文]0.03%和 95.44%的特异性[公式:见正文]0.02%,内部五重交叉验证和 100%和 93.97%的外部测试集验证。RS 是一种在新鲜组织样本中区分脑膜瘤和健康硬脑膜的有效方法,无需额外的处理或组织病理学成像。它是神经病理学工作流程的一种快速、可靠的补充诊断工具,具有引导手术的潜力。RS 为在围手术期检查未固定的手术标本提供了一种安全的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4c/8654829/856f70af3ca8/41598_2021_2977_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验