Zhu Chaoyang, Zhu Xiao, Qin Tuanfa
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China.
School of Computer and Electronic Information, Guangxi University, Nanning 530004, China.
Sensors (Basel). 2024 Feb 20;24(5):1364. doi: 10.3390/s24051364.
The widespread use of UAVs in smart cities for tasks like traffic monitoring and environmental data collection creates significant privacy and security concerns due to the transmission of sensitive data. Traditional UAV-MEC systems with centralized data processing expose this data to risks like breaches and manipulation, potentially hindering the adoption of these valuable technologies. To address this critical challenge, we propose UBFL, a novel privacy-preserving federated learning mechanism that integrates blockchain technology for secure and efficient data sharing. Unlike traditional methods relying on differential privacy (DP), UBFL employs an adaptive nonlinear encryption function to safeguard the privacy of UAV model updates while maintaining data integrity and accuracy. This innovative approach enables rapid convergence, allowing the base station to efficiently identify and filter out severely compromised UAVs attempting to inject malicious data. Additionally, UBFL incorporates the Random Cut Forest (RCF) anomaly detection algorithm to actively identify and mitigate poisoning data attacks. Extensive comparative experiments on benchmark datasets CIFAR10 and Mnist demonstrably showcase UBFL's effectiveness. Compared to DP-based methods, UBFL achieves accuracy (99.98%), precision (99.93%), recall (99.92%), and F-Score (99.92%) in privacy preservation while maintaining superior accuracy. Notably, under data pollution scenarios with varying attack sample rates (10%, 20%, and 30%), UBFL exhibits exceptional resilience, highlighting its robust capabilities in securing UAV gradients within MEC environments.
无人机在智慧城市中广泛用于交通监测和环境数据收集等任务,由于敏感数据的传输,引发了重大的隐私和安全问题。具有集中式数据处理的传统无人机-移动边缘计算(UAV-MEC)系统将这些数据暴露于诸如泄露和操纵等风险中,可能会阻碍这些有价值技术的采用。为应对这一关键挑战,我们提出了UBFL,一种新颖的隐私保护联邦学习机制,它集成了区块链技术以实现安全高效的数据共享。与依赖差分隐私(DP)的传统方法不同,UBFL采用自适应非线性加密函数来保护无人机模型更新的隐私,同时保持数据的完整性和准确性。这种创新方法能够实现快速收敛,使基站能够有效地识别和过滤出试图注入恶意数据的严重受损无人机。此外,UBFL纳入了随机切割森林(RCF)异常检测算法,以主动识别和减轻中毒数据攻击。在基准数据集CIFAR10和Mnist上进行的广泛对比实验显著地展示了UBFL的有效性。与基于DP的方法相比,UBFL在隐私保护方面实现了准确率(99.98%)、精确率(99.93%)、召回率(99.92%)和F值(99.92%),同时保持了卓越的准确性。值得注意的是,在具有不同攻击采样率(10%、20%和30%)的数据污染场景下,UBFL表现出了卓越的弹性,突出了其在移动边缘计算环境中保护无人机梯度的强大能力。