Suppr超能文献

用于MRO机库机器人应用的基于学习的导航系统进展:综述

Advancements in Learning-Based Navigation Systems for Robotic Applications in MRO Hangar: Review.

作者信息

Adiuku Ndidiamaka, Avdelidis Nicolas P, Tang Gilbert, Plastropoulos Angelos

机构信息

Integrated Vehicle Health Management Centre (IVHM), School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.

Centre for Robotics and Assembly, School of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Bedfordshire MK43 0AL, UK.

出版信息

Sensors (Basel). 2024 Feb 21;24(5):1377. doi: 10.3390/s24051377.

Abstract

The field of learning-based navigation for mobile robots is experiencing a surge of interest from research and industry sectors. The application of this technology for visual aircraft inspection tasks within a maintenance, repair, and overhaul (MRO) hangar necessitates efficient perception and obstacle avoidance capabilities to ensure a reliable navigation experience. The present reliance on manual labour, static processes, and outdated technologies limits operation efficiency in the inherently dynamic and increasingly complex nature of the real-world hangar environment. The challenging environment limits the practical application of conventional methods and real-time adaptability to changes. In response to these challenges, recent years research efforts have witnessed advancement with machine learning integration aimed at enhancing navigational capability in both static and dynamic scenarios. However, most of these studies have not been specific to the MRO hangar environment, but related challenges have been addressed, and applicable solutions have been developed. This paper provides a comprehensive review of learning-based strategies with an emphasis on advancements in deep learning, object detection, and the integration of multiple approaches to create hybrid systems. The review delineates the application of learning-based methodologies to real-time navigational tasks, encompassing environment perception, obstacle detection, avoidance, and path planning through the use of vision-based sensors. The concluding section addresses the prevailing challenges and prospective development directions in this domain.

摘要

基于学习的移动机器人导航领域正受到研究和工业界的广泛关注。将该技术应用于维护、修理和大修(MRO)机库内的视觉飞机检查任务,需要具备高效的感知和避障能力,以确保可靠的导航体验。当前对体力劳动、静态流程和过时技术的依赖,限制了在现实世界机库环境中固有的动态性和日益复杂性下的运营效率。具有挑战性的环境限制了传统方法的实际应用以及对变化的实时适应性。为应对这些挑战,近年来的研究工作通过集成机器学习取得了进展,旨在提高在静态和动态场景中的导航能力。然而,这些研究大多并非针对MRO机库环境,但相关挑战已得到解决,并开发了适用的解决方案。本文全面回顾了基于学习的策略,重点介绍了深度学习、目标检测以及创建混合系统的多种方法集成方面的进展。该综述阐述了基于学习的方法在实时导航任务中的应用,包括通过使用基于视觉的传感器进行环境感知、障碍物检测、避障和路径规划。结论部分讨论了该领域当前面临的挑战和未来的发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7963/10935263/24c937b51736/sensors-24-01377-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验