Suppr超能文献

基于传感器融合的动态环境中同时定位与地图构建时消除移动物体的方法

Sensor Fusion-Based Approach to Eliminating Moving Objects for SLAM in Dynamic Environments.

作者信息

Dang Xiangwei, Rong Zheng, Liang Xingdong

机构信息

National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2021 Jan 1;21(1):230. doi: 10.3390/s21010230.

Abstract

Accurate localization and reliable mapping is essential for autonomous navigation of robots. As one of the core technologies for autonomous navigation, Simultaneous Localization and Mapping (SLAM) has attracted widespread attention in recent decades. Based on vision or LiDAR sensors, great efforts have been devoted to achieving real-time SLAM that can support a robot's state estimation. However, most of the mature SLAM methods generally work under the assumption that the environment is static, while in dynamic environments they will yield degenerate performance or even fail. In this paper, first we quantitatively evaluate the performance of the state-of-the-art LiDAR-based SLAMs taking into account different pattens of moving objects in the environment. Through semi-physical simulation, we observed that the shape, size, and distribution of moving objects all can impact the performance of SLAM significantly, and obtained instructive investigation results by quantitative comparison between LOAM and LeGO-LOAM. Secondly, based on the above investigation, a novel approach named EMO to eliminating the moving objects for SLAM fusing LiDAR and mmW-radar is proposed, towards improving the accuracy and robustness of state estimation. The method fully uses the advantages of different characteristics of two sensors to realize the fusion of sensor information with two different resolutions. The moving objects can be efficiently detected based on Doppler effect by radar, accurately segmented and localized by LiDAR, then filtered out from the point clouds through data association and accurate synchronized in time and space. Finally, the point clouds representing the static environment are used as the input of SLAM. The proposed approach is evaluated through experiments using both semi-physical simulation and real-world datasets. The results demonstrate the effectiveness of the method at improving SLAM performance in accuracy (decrease by 30% at least in absolute position error) and robustness in dynamic environments.

摘要

精确的定位和可靠的地图构建对于机器人的自主导航至关重要。作为自主导航的核心技术之一,同时定位与地图构建(SLAM)在近几十年来受到了广泛关注。基于视觉或激光雷达传感器,人们致力于实现能够支持机器人状态估计的实时SLAM。然而,大多数成熟的SLAM方法通常在环境是静态的假设下工作,而在动态环境中它们会产生退化的性能甚至失败。在本文中,首先我们考虑环境中移动物体的不同模式,对基于激光雷达的最先进SLAM的性能进行了定量评估。通过半物理仿真,我们观察到移动物体的形状、大小和分布都会对SLAM的性能产生显著影响,并通过LOAM和LeGO-LOAM之间的定量比较获得了有指导意义的研究结果。其次,基于上述研究,提出了一种名为EMO的新方法,用于消除SLAM中融合激光雷达和毫米波雷达的移动物体,以提高状态估计的准确性和鲁棒性。该方法充分利用了两种传感器不同特性的优势,实现了具有两种不同分辨率传感器信息的融合。可以基于雷达的多普勒效应有效地检测移动物体,通过激光雷达对其进行精确分割和定位,然后通过数据关联从点云中滤除,并在时间和空间上进行精确同步。最后,将代表静态环境的点云用作SLAM的输入。通过使用半物理仿真和真实世界数据集的实验对所提出的方法进行了评估。结果证明了该方法在提高动态环境中SLAM性能的准确性(绝对位置误差至少降低30%)和鲁棒性方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686d/7795064/3015e2ec860c/sensors-21-00230-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验