Kim Seongje, Truong Van-Doi, Lee Kwang-Hee, Yoon Jonghun
Department of Mechanical Design Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si 15588, Republic of Korea.
Sensors (Basel). 2024 Feb 24;24(5):1473. doi: 10.3390/s24051473.
Detecting parcels accurately and efficiently has always been a challenging task when unloading from trucks onto conveyor belts because of the diverse and complex ways in which parcels are stacked. Conventional methods struggle to quickly and accurately classify the various shapes and surface patterns of unordered parcels. In this paper, we propose a parcel-picking surface detection method based on deep learning and image processing for the efficient unloading of diverse and unordered parcels. Our goal is to develop a systematic image processing algorithm that emphasises the boundaries of parcels regardless of their shape, pattern, or layout. The core of the algorithm is the utilisation of RGB-D technology for detecting the primary boundary lines regardless of obstacles such as adhesive labels, tapes, or parcel surface patterns. For cases where detecting the boundary lines is difficult owing to narrow gaps between parcels, we propose using deep learning-based boundary line detection through the You Only Look at Coefficients (YOLACT) model. Using image segmentation techniques, the algorithm efficiently predicts boundary lines, enabling the accurate detection of irregularly sized parcels with complex surface patterns. Furthermore, even for rotated parcels, we can extract their edges through complex mathematical operations using the depth values of the specified position, enabling the detection of the wider surfaces of the rotated parcels. Finally, we validate the accuracy and real-time performance of our proposed method through various case studies, achieving mAP (50) values of 93.8% and 90.8% for randomly sized and rotationally covered boxes with diverse colours and patterns, respectively.
当从卡车上卸载包裹到传送带上时,由于包裹堆叠方式多样且复杂,准确而高效地检测包裹一直是一项具有挑战性的任务。传统方法难以快速且准确地对无序包裹的各种形状和表面图案进行分类。在本文中,我们提出一种基于深度学习和图像处理的包裹拾取表面检测方法,用于高效卸载各种无序包裹。我们的目标是开发一种系统的图像处理算法,该算法能突出包裹的边界,而不考虑其形状、图案或布局。该算法的核心是利用RGB-D技术来检测主要边界线,而不受诸如粘贴标签、胶带或包裹表面图案等障碍物的影响。对于因包裹之间间隙狭窄而难以检测边界线的情况,我们建议通过“你只看系数”(YOLACT)模型使用基于深度学习的边界线检测方法。利用图像分割技术,该算法能有效地预测边界线,从而能够准确检测具有复杂表面图案的不规则尺寸包裹。此外,即使对于旋转的包裹,我们也可以使用指定位置的深度值通过复杂的数学运算来提取其边缘,从而检测旋转包裹的更宽表面。最后,我们通过各种案例研究验证了我们提出的方法的准确性和实时性能,对于随机尺寸且有不同颜色和图案的旋转覆盖盒子,分别实现了93.8%和90.8%的平均精度均值(mAP,50)值。