Suppr超能文献

基于混合机器学习的多变量空气质量预测与建模:以罗马尼亚克拉约瓦为例

Multivariable Air-Quality Prediction and Modelling via Hybrid Machine Learning: A Case Study for Craiova, Romania.

作者信息

El Mghouchi Youness, Udristioiu Mihaela Tinca, Yildizhan Hasan

机构信息

Department of Energetics, ENSAM, Moulay Ismail University, Meknes 50050, Morocco.

Department of Physics, Faculty of Science, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania.

出版信息

Sensors (Basel). 2024 Feb 27;24(5):1532. doi: 10.3390/s24051532.

Abstract

Inadequate air quality has adverse impacts on human well-being and contributes to the progression of climate change, leading to fluctuations in temperature. Therefore, gaining a localized comprehension of the interplay between climate variations and air pollution holds great significance in alleviating the health repercussions of air pollution. This study uses a holistic approach to make air quality predictions and multivariate modelling. It investigates the associations between meteorological factors, encompassing temperature, relative humidity, air pressure, and three particulate matter concentrations (PM10, PM2.5, and PM1), and the correlation between PM concentrations and noise levels, volatile organic compounds, and carbon dioxide emissions. Five hybrid machine learning models were employed to predict PM concentrations and then the Air Quality Index (AQI). Twelve PM sensors evenly distributed in Craiova City, Romania, provided the dataset for five months (22 September 2021-17 February 2022). The sensors transmitted data each minute. The prediction accuracy of the models was evaluated and the results revealed that, in general, the coefficient of determination (R) values exceeded 0.96 (interval of confidence is 0.95) and, in most instances, approached 0.99. Relative humidity emerged as the least influential variable on PM concentrations, while the most accurate predictions were achieved by combining pressure with temperature. PM10 (less than 10 µm in diameter) concentrations exhibited a notable correlation with PM2.5 (less than 2.5 µm in diameter) concentrations and a moderate correlation with PM1 (less than 1 µm in diameter). Nevertheless, other findings indicated that PM concentrations were not strongly related to NOISE, CO, and VOC, and these last variables should be combined with another meteorological variable to enhance the prediction accuracy. Ultimately, this study established novel relationships for predicting PM concentrations and AQI based on the most effective combinations of predictor variables identified.

摘要

空气质量不佳会对人类健康产生不利影响,并促使气候变化加剧,导致气温波动。因此,全面了解气候变化与空气污染之间的相互作用对于减轻空气污染对健康的影响具有重要意义。本研究采用整体方法进行空气质量预测和多变量建模。它调查了气象因素(包括温度、相对湿度、气压以及三种颗粒物浓度(PM10、PM2.5和PM1))之间的关联,以及PM浓度与噪音水平、挥发性有机化合物和二氧化碳排放之间的相关性。使用了五种混合机器学习模型来预测PM浓度,进而预测空气质量指数(AQI)。分布在罗马尼亚克拉约瓦市的12个PM传感器提供了为期五个月(2021年9月22日至2022年2月17日)的数据集。这些传感器每分钟传输一次数据。对模型的预测准确性进行了评估,结果表明,总体而言,决定系数(R)值超过0.96(置信区间为0.95),并且在大多数情况下接近0.99。相对湿度是对PM浓度影响最小的变量,而将气压与温度结合可实现最准确的预测。PM10(直径小于10微米)浓度与PM2.5(直径小于2.5微米)浓度呈现出显著相关性,与PM1(直径小于1微米)浓度呈现出中等相关性。然而,其他研究结果表明,PM浓度与噪音、一氧化碳和挥发性有机化合物之间的关系并不紧密,这些最后变量应与另一个气象变量相结合,以提高预测准确性。最终,本研究基于所确定的预测变量的最有效组合,建立了用于预测PM浓度和AQI的新关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1626/10933804/f96745f59431/sensors-24-01532-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验