School of Statistics, Dongbei University of Finance and Economics, Dalian, China.
School of Statistics, Dongbei University of Finance and Economics, Dalian, China.
Environ Pollut. 2021 Apr 1;274:116429. doi: 10.1016/j.envpol.2021.116429. Epub 2021 Jan 5.
Owing to the high nonlinearity and noise in the air quality index (AQI), tackling the uncertainties and fuzziness in the forecasting process is still a prevalent problem. Therefore, this study developed an intelligent hybrid air-quality forecasting system based on feature selection and a modified evolving interval type-2 quantum fuzzy neural network (eIT2QFNN), which provides accurate air-quality forecasting information by considering climate influencing factors. The main contributions of this study are as follows. The optimal input structure of the model is determined by the proposed second-stage feature-selection model, which can better extract the influencing variables and remove redundant information. Moreover, a novel multi-objective chaotic Bonobo optimizer algorithm is proposed to improve the eIT2QFNN. The modified eIT2QFNN implements AQI prediction by considering the importance of influencing variables that can cope with the uncertainties and fuzziness in the forecasting process. Finally, the Diebold-Mariano and modified Diebold-Mariano tests are employed to evaluate the performance of the proposed system. The experimental results demonstrate that our proposed system significantly improves the modeling performance in terms of high accuracy and compact structure, and can thus serve as an effective tool for air-quality management.
由于空气质量指数(AQI)具有高度的非线性和噪声,因此在预测过程中处理不确定性和模糊性仍然是一个普遍存在的问题。因此,本研究开发了一种基于特征选择和改进的进化区间型 2 量子模糊神经网络(eIT2QFNN)的智能混合空气质量预测系统,通过考虑气候影响因素,提供准确的空气质量预测信息。本研究的主要贡献如下。通过提出的二阶特征选择模型确定模型的最佳输入结构,从而更好地提取影响变量并去除冗余信息。此外,还提出了一种新颖的多目标混沌倭黑猩猩优化器算法来改进 eIT2QFNN。改进的 eIT2QFNN 通过考虑影响变量的重要性来实现 AQI 预测,从而能够应对预测过程中的不确定性和模糊性。最后,采用迪博尔德-马里亚诺和改进的迪博尔德-马里亚诺检验来评估所提出系统的性能。实验结果表明,我们提出的系统在高精度和紧凑结构方面显著提高了建模性能,因此可以作为空气质量管理的有效工具。