文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

橡胶复合材料的电导率、电磁干扰吸收屏蔽性能、固化过程及力学性能

The Electrical Conductivity, EMI Absorption Shielding Performance, Curing Process, and Mechanical Properties of Rubber Composites.

作者信息

Kruželák Ján, Kvasničáková Andrea, Džuganová Michaela, Dosoudil Rastislav, Hudec Ivan, Krump Henrich

机构信息

Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.

Department of Electromagnetic Theory, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Iľkovičova 3, 812 19 Bratislava, Slovakia.

出版信息

Polymers (Basel). 2024 Feb 20;16(5):566. doi: 10.3390/polym16050566.


DOI:10.3390/polym16050566
PMID:38475251
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10934586/
Abstract

Three types of composites were tested for electromagnetic interference (EMI) absorption shielding effectiveness, the curing process, and their physical-mechanical properties. For the first type of composites, nickel-zinc ferrite, manganese-zinc ferrite, and both fillers in their mutual combinations were incorporated into acrylonitrile-butadiene rubber. The overall content of the filler, or fillers, was kept at 200 phr. Then, carbon black or carbon fibers were incorporated into each rubber formulation at a constant loading of-25 phr, while the content of magnetic fillers was unchanged, at -200 phr. This work focused on the understanding of correlations between the electromagnetic shielding parameters and electrical conductivity of composites in relation to their EMI absorption shielding effectiveness. The absorption shielding abilities of materials were evaluated within a frequency bandwidth from 1 MHz to 6 GHz. This study revealed good correlation among permittivity, conductivity, and EMI absorption effectiveness. Although the absorption shielding efficiency of composites filled only with ferrites seems to be the highest, the absorption maxima of those composites reached over 6 GHz. The application of carbon-based fillers resulted in the higher electrical conductivity and higher permittivity of composites, which was reflected in their lower absorption shielding performance. However, the composites filled with ferrites and carbon-based fillers absorbed electromagnetic radiation within the desired frequency range. The presence of carbon-based fillers caused improvement in the tensile behavior of composites. This study also demonstrated that the higher the ratio of nickel-zinc ferrite in combined magnetic fillers, the better the absorption shielding efficiency.

摘要

对三种类型的复合材料进行了电磁干扰(EMI)吸收屏蔽效能、固化过程及其物理力学性能的测试。对于第一种类型的复合材料,将镍锌铁氧体、锰锌铁氧体以及它们的相互组合的两种填料掺入丙烯腈-丁二烯橡胶中。填料的总含量保持在200 phr。然后,将炭黑或碳纤维以-25 phr的恒定负载量掺入每种橡胶配方中,而磁性填料的含量保持不变,为-200 phr。这项工作的重点是了解复合材料的电磁屏蔽参数与电导率之间的相关性及其与EMI吸收屏蔽效能的关系。在1 MHz至6 GHz的频率带宽内评估材料的吸收屏蔽能力。这项研究揭示了介电常数、电导率和EMI吸收效能之间的良好相关性。尽管仅填充铁氧体的复合材料的吸收屏蔽效率似乎最高,但这些复合材料的吸收最大值超过了6 GHz。碳基填料的应用导致复合材料具有更高的电导率和更高的介电常数,这反映在它们较低的吸收屏蔽性能上。然而,填充有铁氧体和碳基填料的复合材料在所需频率范围内吸收电磁辐射。碳基填料的存在改善了复合材料的拉伸性能。这项研究还表明,在复合磁性填料中镍锌铁氧体的比例越高,吸收屏蔽效率越好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/c5674419aace/polymers-16-00566-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/9f22a1b32b05/polymers-16-00566-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/ed3af60c68e2/polymers-16-00566-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/9ba17958667b/polymers-16-00566-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/699595922c24/polymers-16-00566-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/c036f3302b5b/polymers-16-00566-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/459d023b583e/polymers-16-00566-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/6a562a0fb86d/polymers-16-00566-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/6bc0a59b45d5/polymers-16-00566-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/1f77ad9e51b1/polymers-16-00566-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/03e6c7499e7d/polymers-16-00566-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/52657ac49a77/polymers-16-00566-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/eab20952a1b8/polymers-16-00566-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/f224402c757a/polymers-16-00566-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/f0352720fc4a/polymers-16-00566-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/abb698d6a6f1/polymers-16-00566-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/828fb1b73da3/polymers-16-00566-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/f6069c6e2fea/polymers-16-00566-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/156854463b99/polymers-16-00566-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/c5674419aace/polymers-16-00566-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/9f22a1b32b05/polymers-16-00566-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/ed3af60c68e2/polymers-16-00566-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/9ba17958667b/polymers-16-00566-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/699595922c24/polymers-16-00566-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/c036f3302b5b/polymers-16-00566-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/459d023b583e/polymers-16-00566-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/6a562a0fb86d/polymers-16-00566-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/6bc0a59b45d5/polymers-16-00566-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/1f77ad9e51b1/polymers-16-00566-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/03e6c7499e7d/polymers-16-00566-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/52657ac49a77/polymers-16-00566-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/eab20952a1b8/polymers-16-00566-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/f224402c757a/polymers-16-00566-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/f0352720fc4a/polymers-16-00566-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/abb698d6a6f1/polymers-16-00566-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/828fb1b73da3/polymers-16-00566-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/f6069c6e2fea/polymers-16-00566-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/156854463b99/polymers-16-00566-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98c1/10934586/c5674419aace/polymers-16-00566-g019.jpg

相似文献

[1]
The Electrical Conductivity, EMI Absorption Shielding Performance, Curing Process, and Mechanical Properties of Rubber Composites.

Polymers (Basel). 2024-2-20

[2]
Curing, Properties and EMI Absorption Shielding of Rubber Composites Based on Ferrites and Carbon Fibres.

Polymers (Basel). 2023-2-9

[3]
Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers.

Polymers (Basel). 2021-8-31

[4]
Electromagnetic Interference Shielding and Physical-Mechanical Characteristics of Rubber Composites Filled with Manganese-Zinc Ferrite and Carbon Black.

Polymers (Basel). 2021-2-18

[5]
Influence of Conductive Filler Types on the Ratio of Reflection and Absorption Properties in Cement-Based EMI Shielding Composites.

Materials (Basel). 2024-10-8

[6]
Superior mechanical, electrical, dielectric, and EMI shielding properties of ethylene propylene diene monomer (EPDM) based carbon black composites.

RSC Adv. 2023-8-24

[7]
Synthesis of nickel particles for use in nickel/silicone rubber composites for the application of electromagnetic interference shielding gaskets.

Heliyon. 2024-1-16

[8]
Utilization of Stainless-steel Furnace Dust as an Admixture for Synthesis of Cement-based Electromagnetic Interference Shielding Composites.

Sci Rep. 2017-11-13

[9]
Structural design and preparation of TiCT MXene/polymer composites for absorption-dominated electromagnetic interference shielding.

Nanoscale Adv. 2023-6-20

[10]
Electromagnetic interference shielding in 1-18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites.

Phys Chem Chem Phys. 2015-8-21

引用本文的文献

[1]
Conducting Rubber Anisotropy of Electrophysical and Mechanical Properties.

Polymers (Basel). 2025-2-14

[2]
The Effect of Rubber-Metal Interactions on the Mechanical, Magneto-Mechanical, and Electrical Properties of Iron, Aluminum, and Hybrid Filler-Based Styrene-Butadiene Rubber Composites.

Polymers (Basel). 2024-8-27

[3]
Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers.

Polymers (Basel). 2024-7-29

[4]
Ultrasonication Influence on the Morphological Characteristics of Graphene Nanoplatelet Nanocomposites and Their Electrical and Electromagnetic Interference Shielding Behavior.

Polymers (Basel). 2024-4-11

本文引用的文献

[1]
Reduced Graphene Oxide/Barium Ferrite Ceramic Nanocomposite Synergism for High EMI Wave Absorption.

ACS Omega. 2023-4-20

[2]
Electromagnetic Interference Shielding Effectiveness of Direct-Grown-Carbon Nanotubes/Carbon and Glass Fiber-Reinforced Epoxy Matrix Composites.

Materials (Basel). 2023-3-24

[3]
Effect of ElectroMagnetic interference from SmartPHone on cardiac ImplaNtable electronic device (EMI-PHONE study).

J Arrhythm. 2022-7-12

[4]
Electromagnetic Absorption and Mechanical Properties of Natural Rubber Composites Based on Conductive Carbon Black and FeO.

Materials (Basel). 2022-9-21

[5]
Progress in polymers and polymer composites used as efficient materials for EMI shielding.

Nanoscale Adv. 2020-11-10

[6]
Improving Electromagnetic Interference Shielding While Retaining Mechanical Properties of Carbon Fiber-Based Composites by Introducing Carbon Nanofiber Sheet into Laminate Structure.

Polymers (Basel). 2022-4-20

[7]
Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers.

Polymers (Basel). 2021-8-31

[8]
Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain.

Front Public Health. 2021

[9]
Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing.

Materials (Basel). 2021-7-26

[10]
Electromagnetic Interference Shielding and Physical-Mechanical Characteristics of Rubber Composites Filled with Manganese-Zinc Ferrite and Carbon Black.

Polymers (Basel). 2021-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索