文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

填充磁铁矿和碳纤维填料的丙烯腈-丁二烯-苯乙烯复合材料的电物理特性

Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers.

作者信息

Lebedeva Elena A, Ivanova Elena V, Trukhinov Denis K, Istomina Tatiana S, Knyazev Nikolay S, Malkin Alexander I, Chechetkin Victor A, Korotkov Alexey N, Balasoiu Maria, Astaf'eva Svetlana A

机构信息

"Institute of Technical Chemistry of UB RAS"-Affiliation of Perm Federal Research Centre of Ural Branch of Russian Academy of Sciences, Akademika Koroleva str., 3, Perm 614013, Russia.

Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Mira str., 19, Yekaterinburg 620002, Russia.

出版信息

Polymers (Basel). 2024 Jul 29;16(15):2153. doi: 10.3390/polym16152153.


DOI:10.3390/polym16152153
PMID:39125178
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11314315/
Abstract

With the rapid development of wireless communication technologies and the miniaturization trend in the electronics industry, the reduction of electromagnetic interference has become an important issue. To solve this problem, a lot of attention has been focused on polymer composites with combined functional fillers. In this paper, we report a method for creating an acrylonitrile butadiene styrene (ABS) plastic composite with a low amount of conductive carbon and magnetic fillers preparation. Also, we investigate the mechanical, thermophysical, and electrodynamic characteristics of the resulting composites. Increasing the combined filler amount in the ABS composite from 1 to 5 wt % leads to a composite conductivity growth of almost 50 times. It is necessary to underline the temperature decrease of 5 wt % mass loss and, accordingly, the composite heat resistance reduction with an increase in the combined filler from 1 to 5 wt %, while the thermal conductivity remains almost constant. It was established that electrodynamic and physical-mechanical characteristics depend on the agglomeration of fillers. This work is expected to reveal the potential of combining commercially available fillers to construct effective materials with good electromagnetic interference (EMI) protection using mass production methods (extrusion and injection molding).

摘要

随着无线通信技术的迅速发展以及电子行业的小型化趋势,减少电磁干扰已成为一个重要问题。为了解决这个问题,很多注意力都集中在了具有复合功能填料的聚合物复合材料上。在本文中,我们报告了一种制备含有少量导电碳和磁性填料的丙烯腈 - 丁二烯 - 苯乙烯(ABS)塑料复合材料的方法。此外,我们还研究了所得复合材料的机械、热物理和电动力学特性。将ABS复合材料中复合填料的含量从1 wt%增加到5 wt%会导致复合材料的电导率增长近50倍。需要强调的是,随着复合填料从1 wt%增加到5 wt%,5 wt%质量损失时的温度降低,相应地复合材料的耐热性降低,而热导率几乎保持不变。已确定电动力学和物理机械特性取决于填料的团聚。这项工作有望揭示结合市售填料以利用大规模生产方法(挤出和注塑成型)构建具有良好电磁干扰(EMI)防护的有效材料的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/ae6bf82f161e/polymers-16-02153-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/ed20f20f5a7d/polymers-16-02153-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/d9bafcbeba11/polymers-16-02153-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/20d0e20baa22/polymers-16-02153-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/69300f414335/polymers-16-02153-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/75c5255a9775/polymers-16-02153-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/2eccbb545256/polymers-16-02153-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/a26613b38517/polymers-16-02153-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/ae6bf82f161e/polymers-16-02153-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/ed20f20f5a7d/polymers-16-02153-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/d9bafcbeba11/polymers-16-02153-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/20d0e20baa22/polymers-16-02153-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/69300f414335/polymers-16-02153-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/75c5255a9775/polymers-16-02153-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/2eccbb545256/polymers-16-02153-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/a26613b38517/polymers-16-02153-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a2/11314315/ae6bf82f161e/polymers-16-02153-g008.jpg

相似文献

[1]
Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers.

Polymers (Basel). 2024-7-29

[2]
Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers.

Polymers (Basel). 2021-8-31

[3]
The Electrical Conductivity, EMI Absorption Shielding Performance, Curing Process, and Mechanical Properties of Rubber Composites.

Polymers (Basel). 2024-2-20

[4]
Comparative Performance Study of Acidic Pumice and Basic Pumice Inclusions for Acrylonitrile-Butadiene-Styrene-Based Composite Filaments.

3D Print Addit Manuf. 2024-2-1

[5]
Dual-Sizing Effects of Carbon Fiber on the Thermal, Mechanical, and Impact Properties of Carbon Fiber/ABS Composites.

Polymers (Basel). 2021-7-13

[6]
Polymer Composites Based on Polycarbonate/Acrylonitrile-Butadiene-Styrene Used in Rapid Prototyping Technology.

Polymers (Basel). 2023-3-21

[7]
The Effect of Graphene Oxide and SEBS-g-MAH Compatibilizer on Mechanical and Thermal Properties of Acrylonitrile-Butadiene-Styrene/Talc Composite.

Polymers (Basel). 2021-9-19

[8]
Mouldable Conductive Plastic with Optimised Mechanical Properties.

Polymers (Basel). 2024-1-23

[9]
Mechanical Properties and Electromagnetic Interference Shielding of Carbon Composites with Polycarbonate and Acrylonitrile Butadiene Styrene Resins.

Polymers (Basel). 2023-2-9

[10]
Preparation and characterization of lignin/nano graphene oxide/styrene butadiene rubber composite for automobile tyre application.

Int J Biol Macromol. 2022-5-1

本文引用的文献

[1]
The Electrical Conductivity, EMI Absorption Shielding Performance, Curing Process, and Mechanical Properties of Rubber Composites.

Polymers (Basel). 2024-2-20

[2]
Electromagnetic Interference Shielding Performances of Carbon-Fiber-Reinforced PA11/PLA Composites in the X-Band Frequency Range.

ACS Omega. 2023-6-15

[3]
Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Properties.

Polymers (Basel). 2023-1-18

[4]
Anisotropic PDMS/Alumina/Carbon Fiber Composites with a High Thermal Conductivity and an Electromagnetic Interference Shielding Performance.

Materials (Basel). 2022-11-15

[5]
Review of electromagnetic interference shielding materials fabricated by iron ingredients.

Nanoscale Adv. 2019-4-1

[6]
Carbon Fiber/Phenolic Composites with High Thermal Conductivity Reinforced by a Three-Dimensional Carbon Fiber Felt Network Structure.

ACS Omega. 2022-8-12

[7]
Constructing a Segregated Magnetic Graphene Network in Rubber Composites for Integrating Electromagnetic Interference Shielding Stability and Multi-Sensing Performance.

Polymers (Basel). 2021-9-26

[8]
Thermal Conductivity and Electromagnetic Interference (EMI) Absorbing Properties of Composite Sheets Composed of Dry Processed Core-Shell Structured Fillers and Silicone Polymers.

Polymers (Basel). 2020-10-10

[9]
Ultrafast Iron-Making Method: Carbon Combustion Synthesis from Carbon-Infiltrated Goethite Ore.

ACS Omega. 2018-6-7

[10]
Layer-Structured Design and Fabrication of Cyanate Ester Nanocomposites for Excellent Electromagnetic Shielding with Absorption-Dominated Characteristic.

Polymers (Basel). 2018-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索