Suppr超能文献

通过功能性蛋白质褶皱涂层调控动态3D支架的形貌

Tuning the Topography of Dynamic 3D Scaffolds through Functional Protein Wrinkled Coatings.

作者信息

Oguntade Elizabeth, Fougnier Daniel, Meyer Sadie, O'Grady Kerrin, Kudlack Autumn, Henderson James H

机构信息

Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.

BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA.

出版信息

Polymers (Basel). 2024 Feb 23;16(5):609. doi: 10.3390/polym16050609.

Abstract

Surface wrinkling provides an approach to fabricate micron and sub-micron-level biomaterial topographies that can mimic features of the dynamic, in vivo cell environment and guide cell adhesion, alignment, and differentiation. Most wrinkling research to date has used planar, two-dimensional (2D) substrates, and wrinkling work on three-dimensional (3D) structures has been limited. To enable wrinkle formation on architecturally complex, biomimetic 3D structures, here, we report a simple, low-cost experimental wrinkling approach that combines natural silk fibroin films with a recently developed advanced manufacturing technique for programming strain in complex 3D shape-memory polymer (SMP) scaffolds. By systematically investigating the influence of SMP programmed strain magnitude, silk film thickness, and aqueous media on wrinkle morphology and stability, we reveal how to generate and tune silk wrinkles on the micron and sub-micron scale. We find that increasing SMP programmed strain magnitude increases wavelength and decreases amplitudes of silk wrinkled topographies, while increasing silk film thickness increases wavelength and amplitude. Silk wrinkles persist after 24 h in cell culture medium. Wrinkled topographies demonstrate high cell viability and attachment. These findings suggest the potential for fabricating biomimetic cellular microenvironments that can advance understanding and control of cell-material interactions in engineering tissue constructs.

摘要

表面起皱提供了一种制造微米和亚微米级生物材料拓扑结构的方法,这种结构可以模拟动态的体内细胞环境特征,并引导细胞粘附、排列和分化。迄今为止,大多数起皱研究都使用平面二维(2D)基板,而在三维(3D)结构上的起皱研究一直很有限。为了在结构复杂的仿生3D结构上实现起皱,在此,我们报告了一种简单、低成本的实验性起皱方法,该方法将天然丝素蛋白薄膜与最近开发的一种先进制造技术相结合,用于在复杂的3D形状记忆聚合物(SMP)支架中编程应变。通过系统地研究SMP编程应变幅度、丝膜厚度和水性介质对皱纹形态和稳定性的影响,我们揭示了如何在微米和亚微米尺度上生成和调整丝皱纹。我们发现,增加SMP编程应变幅度会增加波长并减小丝起皱拓扑结构的幅度,而增加丝膜厚度会增加波长和幅度。丝皱纹在细胞培养基中24小时后仍能持续存在。起皱的拓扑结构显示出高细胞活力和附着性。这些发现表明,制造仿生细胞微环境具有潜力,可促进对工程组织构建物中细胞与材料相互作用的理解和控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff83/10934732/9fbab18b97ca/polymers-16-00609-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验