Department of Cardiology, Shantou Central Hospital, Shantou, 515031, China.
School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
BMC Genomics. 2024 Mar 12;25(1):271. doi: 10.1186/s12864-024-10194-5.
Acute cardiac injury caused by coronavirus disease 2019 (COVID-19) increases mortality. Acute cardiac injury caused by COVID-19 requires understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects cardiomyocytes. This study provides a solid foundation for related studies by using a model of SARS-CoV-2 infection in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) at the transcriptome level, highlighting the relevance of this study to related studies. SARS-CoV-2 infection in hiPSC-CMs has previously been studied by bioinformatics without presenting the full molecular biological process. We present a unique bioinformatics view of the complete molecular biological process of SARS-CoV-2 infection in hiPSC-CMs.
To validate the RNA-seq datasets, we used GSE184715 and GSE150392 for the analytical studies, GSE193722 for validation at the cellular level, and GSE169241 for validation in heart tissue samples. GeneCards and MsigDB databases were used to find genes associated with the phenotype. In addition to differential expression analysis and principal component analysis (PCA), we also performed protein-protein interaction (PPI) analysis, functional enrichment analysis, hub gene analysis, upstream transcription factor prediction, and drug prediction.
Differentially expressed genes (DEGs) were classified into four categories: cardiomyocyte cytoskeletal protein inhibition, proto-oncogene activation and inflammation, mitochondrial dysfunction, and intracellular cytoplasmic physiological function. Each of the hub genes showed good diagnostic prediction, which was well validated in other datasets. Inhibited biological functions included cardiomyocyte cytoskeletal proteins, adenosine triphosphate (ATP) synthesis and electron transport chain (ETC), glucose metabolism, amino acid metabolism, fatty acid metabolism, pyruvate metabolism, citric acid cycle, nucleic acid metabolism, replication, transcription, translation, ubiquitination, autophagy, and cellular transport. Proto-oncogenes, inflammation, nuclear factor-kappaB (NF-κB) pathways, and interferon signaling were activated, as well as inflammatory factors. Viral infection activates multiple pathways, including the interferon pathway, proto-oncogenes and mitochondrial oxidative stress, while inhibiting cardiomyocyte backbone proteins and energy metabolism. Infection limits intracellular synthesis and metabolism, as well as the raw materials for mitochondrial energy synthesis. Mitochondrial dysfunction and energy abnormalities are ultimately caused by proto-oncogene activation and SARS-CoV-2 infection. Activation of the interferon pathway, proto-oncogene up-regulation, and mitochondrial oxidative stress cause the inflammatory response and lead to diminished cardiomyocyte contraction. Replication, transcription, translation, ubiquitination, autophagy, and cellular transport are among the functions that decline physiologically.
SARS-CoV-2 infection in hiPSC-CMs is fundamentally mediated via mitochondrial dysfunction. Therapeutic interventions targeting mitochondrial dysfunction may alleviate the cardiovascular complications associated with SARS-CoV-2 infection.
由 2019 年冠状病毒病(COVID-19)引起的急性心脏损伤会增加死亡率。由 COVID-19 引起的急性心脏损伤需要了解严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)如何直接感染心肌细胞。本研究通过人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)中 SARS-CoV-2 感染的转录组水平模型,为相关研究提供了坚实的基础,突出了本研究与相关研究的相关性。先前已经通过生物信息学研究了 hiPSC-CMs 中的 SARS-CoV-2 感染,但并未呈现完整的分子生物学过程。我们提供了 SARS-CoV-2 感染 hiPSC-CMs 的完整分子生物学过程的独特生物信息学视图。
为了验证 RNA-seq 数据集,我们使用 GSE184715 和 GSE150392 进行分析研究,使用 GSE193722 在细胞水平上进行验证,使用 GSE169241 在心脏组织样本中进行验证。使用 GeneCards 和 MsigDB 数据库查找与表型相关的基因。除了差异表达分析和主成分分析(PCA)之外,我们还进行了蛋白质-蛋白质相互作用(PPI)分析、功能富集分析、枢纽基因分析、上游转录因子预测和药物预测。
差异表达基因(DEGs)分为四类:心肌细胞细胞骨架蛋白抑制、原癌基因激活和炎症、线粒体功能障碍和细胞内细胞质生理功能。每个枢纽基因都显示出良好的诊断预测能力,在其他数据集上也得到了很好的验证。受抑制的生物学功能包括心肌细胞细胞骨架蛋白、三磷酸腺苷(ATP)合成和电子传递链(ETC)、葡萄糖代谢、氨基酸代谢、脂肪酸代谢、丙酮酸代谢、柠檬酸循环、核酸代谢、复制、转录、翻译、泛素化、自噬和细胞运输。原癌基因、炎症、核因子-κB(NF-κB)途径和干扰素信号转导被激活,同时也激活了炎症因子。病毒感染激活了多种途径,包括干扰素途径、原癌基因和线粒体氧化应激,同时抑制了心肌细胞骨架蛋白和能量代谢。感染限制了细胞内合成和代谢,以及线粒体能量合成的原料。线粒体功能障碍和能量异常最终是由原癌基因激活和 SARS-CoV-2 感染引起的。干扰素途径的激活、原癌基因的上调和线粒体氧化应激导致炎症反应,导致心肌细胞收缩减弱。复制、转录、翻译、泛素化、自噬和细胞运输等功能都在生理上下降。
hiPSC-CMs 中的 SARS-CoV-2 感染主要通过线粒体功能障碍介导。针对线粒体功能障碍的治疗干预可能会减轻与 SARS-CoV-2 感染相关的心血管并发症。