Suppr超能文献

利用水稳定性探测金属有机框架材料中的结构缺陷

Probing Structural Defects in MOFs Using Water Stability.

作者信息

Jamdade Shubham, Yu Zhenzi, Boulfelfel Salah Eddine, Cai Xuqing, Thyagarajan Raghuram, Fang Hanjun, Sholl David S

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States.

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Feb 23;128(9):3975-3984. doi: 10.1021/acs.jpcc.3c07497. eCollection 2024 Mar 7.

Abstract

Defects in the crystal structures of metal-organic frameworks (MOFs), whether present intrinsically or introduced via so-called defect engineering, can play strong roles in the properties of MOFs for various applications. Unfortunately, direct experimental detection and characterization of defects in MOFs are very challenging. We show that in many cases, the differences between experimentally observed and computationally predicted water stabilities of MOFs can be used to deduce information on the presence of point defects in real materials. Most computational studies of MOFs consider these materials to be defect-free, and in many cases, the resulting structures are predicted to be hydrophobic. Systematic experimental studies, however, have shown that many MOFs are hydrophilic. We show that the existence of chemically plausible point defects can often account for this discrepancy and use this observation in combination with detailed molecular simulations to assess the impact of local defects and flexibility in a variety of MOFs for which defects had not been considered previously.

摘要

金属有机框架材料(MOFs)晶体结构中的缺陷,无论是固有存在的还是通过所谓的缺陷工程引入的,在MOFs用于各种应用时的性能方面都可能发挥重要作用。不幸的是,对MOFs中的缺陷进行直接实验检测和表征极具挑战性。我们表明,在许多情况下,MOFs实验观测到的和计算预测的水稳定性之间的差异可用于推断实际材料中存在点缺陷的信息。大多数关于MOFs的计算研究认为这些材料无缺陷,并且在许多情况下,预测得到的结构是疏水的。然而,系统的实验研究表明许多MOFs是亲水的。我们表明,化学上合理的点缺陷的存在通常可以解释这种差异,并结合详细的分子模拟利用这一观察结果来评估局部缺陷和柔性对各种此前未考虑缺陷的MOFs的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e6/10926153/c901423d8457/jp3c07497_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验