Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, P. R. China.
Anal Chem. 2024 Mar 26;96(12):4774-4782. doi: 10.1021/acs.analchem.3c04202. Epub 2024 Mar 13.
Circulating tumor DNA (ctDNA), as a next-generation tumor marker, enables early screening and monitoring of cancer through noninvasive testing. Exploring the development of new methods for ctDNA detection is an intriguing study. In this work, a unique electrochemical biosensor for the ctDNA detector was constructed in the first utilizing Fe single-atom nanozymes-carbon dots (SA Fe-CDs) as a signaling carrier in collaboration with a DNA walker cascade amplification strategy triggered by nucleic acid exonuclease III (Exo III). The electrochemical active surface area of AuNPs/rGO modified onto a glassy carbon electrode (AuNPs/rGO/GCE) was about 1.43 times that of a bare electrode (bare GCE), with good electrical conductivity alongside a high heterogeneous electron transfer rate (5.81 × 10 cm s), that is, as well as the ability to load more molecules. Sequentially, the DNA walker cascade amplification strategy driven by Exo III effectively converted the target ctDNA into an amplified biosignal, ensuring the sensitivity and specificity of ctDNA. Ultimately, the electrochemical signal was further amplified by introducing SA Fe-CDs nanozymes, which could serve as catalysts for 3,3',5,5'-tetramethylbenzidine (TMB) oxidation with facile responding ( = 0.854 × 10 M s) and robust annexation ( = 0.0069 mM). The integration of the triple signal amplification approach achieved detection limits as low as 1.26 aM (/ = 3) for a linearity spanning from 5 aM to 50 nM. In this regard, our proposal for a biosensor with exceptional assay properties in complicated serum environments had great potential for early and timely diagnosis of cancer.
循环肿瘤 DNA(ctDNA)作为一种下一代肿瘤标志物,通过非侵入性检测实现了癌症的早期筛查和监测。探索 ctDNA 检测新方法的发展是一项有趣的研究。在这项工作中,首次利用 Fe 单原子纳米酶-碳点(SA Fe-CDs)作为信号载体,结合核酸外切酶 III(Exo III)触发的 DNA walker 级联扩增策略,构建了用于 ctDNA 检测的独特电化学生物传感器。修饰在玻碳电极上的 AuNPs/rGO(AuNPs/rGO/GCE)的电化学活性表面积约为裸电极(bare GCE)的 1.43 倍,具有良好的导电性和高的非均相电子转移速率(5.81×10 cm s),即能够加载更多的分子。随后,由 Exo III 驱动的 DNA walker 级联扩增策略有效地将靶 ctDNA 转化为扩增的生物信号,保证了 ctDNA 的灵敏度和特异性。最终,通过引入 SA Fe-CDs 纳米酶进一步放大了电化学信号,纳米酶可以作为 3,3',5,5'-四甲基联苯胺(TMB)氧化的催化剂,具有简单的响应性( = 0.854×10 M s)和强结合性( = 0.0069 mM)。三重信号放大方法的集成实现了检测限低至 1.26 aM(/ = 3)的线性范围从 5 aM 到 50 nM。在这方面,我们提出的具有复杂血清环境中出色分析性能的生物传感器在癌症的早期和及时诊断方面具有巨大的潜力。
Biosens Bioelectron. 2018-2-23
ACS Appl Mater Interfaces. 2015-8-26
Front Chem. 2024-8-12