文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Preparation and application of single-atom nanozymes in oncology: a review.

作者信息

Liang Huiyuan, Xian Yijie, Wang Xujing

机构信息

School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China.

School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Chem. 2024 Aug 12;12:1442689. doi: 10.3389/fchem.2024.1442689. eCollection 2024.


DOI:10.3389/fchem.2024.1442689
PMID:39189019
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11345252/
Abstract

Single-atom nanozymes (SAzymes) represent a cutting-edge advancement in nanomaterials, merging the high catalytic efficiency of natural enzymes with the benefits of atomic economy. Traditionally, natural enzymes exhibit high specificity and efficiency, but their stability are limited by environmental conditions and production costs. Here we show that SAzymes, with their large specific surface area and high atomic utilization, achieve superior catalytic activity. However, their high dispersibility poses stability challenges. Our review focuses on recent structural and preparative advancements aimed at enhancing the catalytic specificity and stability of SAzymes. Compared to previous nanozymes, SAzymes demonstrate significantly improved performance in biomedical applications, particularly in tumor medicine. This progress positions SAzymes as a promising tool for future cancer treatment strategies, integrating the robustness of inorganic materials with the specificity of biological systems. The development and application of SAzymes could revolutionize the field of biocatalysis, offering a stable, cost-effective alternative to natural enzymes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/a952dc596d19/fchem-12-1442689-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/3e383be08b27/fchem-12-1442689-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/ce41cf083715/fchem-12-1442689-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/e05c8e15a1b9/fchem-12-1442689-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/55ccb4349e5c/fchem-12-1442689-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/a2135479ea92/fchem-12-1442689-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/bb631ab33fd1/fchem-12-1442689-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/80a60e8a9389/fchem-12-1442689-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/e9e40570ada1/fchem-12-1442689-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/b7f7f23e5bc5/fchem-12-1442689-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/e24d02033313/fchem-12-1442689-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/588028241c69/fchem-12-1442689-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/a952dc596d19/fchem-12-1442689-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/3e383be08b27/fchem-12-1442689-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/ce41cf083715/fchem-12-1442689-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/e05c8e15a1b9/fchem-12-1442689-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/55ccb4349e5c/fchem-12-1442689-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/a2135479ea92/fchem-12-1442689-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/bb631ab33fd1/fchem-12-1442689-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/80a60e8a9389/fchem-12-1442689-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/e9e40570ada1/fchem-12-1442689-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/b7f7f23e5bc5/fchem-12-1442689-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/e24d02033313/fchem-12-1442689-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/588028241c69/fchem-12-1442689-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2eb/11345252/a952dc596d19/fchem-12-1442689-g012.jpg

相似文献

[1]
Preparation and application of single-atom nanozymes in oncology: a review.

Front Chem. 2024-8-12

[2]
Single-Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges.

Chem Asian J. 2022-4-1

[3]
Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial.

Molecules. 2022-8-25

[4]
Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications.

Small. 2023-7

[5]
Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications.

Adv Mater. 2024-5

[6]
Recent progress in single-atom nanozymes research.

Nano Res. 2023

[7]
Rational design and structural engineering of heterogeneous single-atom nanozyme for biosensing.

Biosens Bioelectron. 2022-11-15

[8]
Single-atom nanozymes shines diagnostics of gastrointestinal diseases.

J Nanobiotechnology. 2024-5-25

[9]
When Nanozymes Meet Single-Atom Catalysis.

Angew Chem Int Ed Engl. 2020-2-10

[10]
Atomic engineering of single-atom nanozymes for enzyme-like catalysis.

Chem Sci. 2020-8-11

本文引用的文献

[1]
Single-atom nanozymes shines diagnostics of gastrointestinal diseases.

J Nanobiotechnology. 2024-5-25

[2]
Fe Single-Atom Carbon Dots Nanozyme Collaborated with Nucleic Acid Exonuclease III-Driven DNA Walker Cascade Amplification Strategy for Circulating Tumor DNA Detection.

Anal Chem. 2024-3-26

[3]
Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications.

Adv Mater. 2024-5

[4]
Engineering Atomically Dispersed Cu-NS Sites via Chemical Vapor Deposition to Boost Enzyme-Like Activity for Efficient Tumor Therapy.

Adv Mater. 2024-3

[5]
Boosting the Catalase-Like Activity of SAzymes via Facile Tuning of the Distances between Neighboring Atoms in Single-Iron Sites.

Angew Chem Int Ed Engl. 2024-2-26

[6]
Employing Noble Metal-Porphyrins to Engineer Robust and Highly Active Single-Atom Nanozymes for Targeted Catalytic Therapy in Nasopharyngeal Carcinoma.

Adv Mater. 2024-2

[7]
Drug-Primed Self-Assembly of Platinum-Single-Atom Nanozyme to Regulate Cellular Redox Homeostasis Against Cancer.

Adv Sci (Weinh). 2023-10

[8]
Non-heme Iron Single-Atom Nanozymes as Peroxidase Mimics for Tumor Catalytic Therapy.

Nano Lett. 2023-9-27

[9]
Breaking Local Charge Symmetry of Iron Single Atoms for Efficient Electrocatalytic Nitrate Reduction to Ammonia.

Angew Chem Int Ed Engl. 2023-9-25

[10]
Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications.

Small. 2023-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索