Suppr超能文献

人心肌细胞动作电位建模:探索离子通道输入组合。

Human Cardiomyocyte Action Potential Modeling: Exploring Ion Channel Input Combinations.

机构信息

GREPAQ (Groupe de Recherche en Pharmacologie Animale du Québec), Université de Montréal, Saint-Hyacinthe, QC, Canada.

Charles River Laboratories, Laval, QC, Canada.

出版信息

Int J Toxicol. 2024 Jul-Aug;43(4):357-367. doi: 10.1177/10915818241237988. Epub 2024 Mar 13.

Abstract

modeling offers an opportunity to supplement and accelerate cardiac safety testing. With in silico modeling, computational simulation methods are used to predict electrophysiological interactions and pharmacological effects of novel drugs on critical physiological processes. The O'Hara-Rudy's model was developed to predict the response to different ion channel inhibition levels on cardiac action potential duration (APD) which is known to directly correlate with the QT interval. APD data at 30% 60% and 90% inhibition were derived from the model to delineate possible ventricular arrhythmia scenarios and the marginal contribution of each ion channel to the model. Action potential values were calculated for epicardial, myocardial, and endocardial cells, with action potential curve modeling. This study assessed cardiac ion channel inhibition data combinations to consider when undertaking in silico modeling of proarrhythmic effects as stipulated in the Comprehensive in Vitro Proarrhythmia Assay (CiPA). As expected, our data highlight the importance of the delayed rectifier potassium channel (I) as the most impactful channel for APD prolongation. The impact of the transient outward potassium channel (I) inhibition on APD was minimal while the inward rectifier (I) and slow component of the delayed rectifier potassium channel (I) also had limited APD effects. In contrast, the contribution of fast sodium channel (I) and/or L-type calcium channel (I) inhibition resulted in substantial APD alterations supporting the pharmacological relevance of in silico modeling using input from a limited number of cardiac ion channels including I, I, and I, at least at an early stage of drug development.

摘要

建模为补充和加速心脏安全性测试提供了机会。通过计算机建模,使用计算模拟方法来预测新型药物对关键生理过程的电生理相互作用和药理作用。O'Hara-Rudy 模型用于预测不同离子通道抑制水平对心脏动作电位时程(APD)的反应,APD 与 QT 间期直接相关。从模型中得出 30%、60%和 90%抑制的 APD 数据,以描绘可能的室性心律失常情况以及每个离子通道对模型的边际贡献。采用动作电位曲线建模方法,计算心外膜、心肌和心内膜细胞的动作电位值。这项研究评估了心脏离子通道抑制数据组合,以便在按照全面体外致心律失常试验(CiPA)进行致心律失常作用的计算机建模时考虑这些数据。正如预期的那样,我们的数据强调了延迟整流钾通道(I)作为延长 APD 的最具影响力通道的重要性。瞬时外向钾通道(I)抑制对 APD 的影响最小,而内向整流钾通道(I)和延迟整流钾通道的缓慢成分(I)对 APD 的影响也有限。相比之下,快速钠通道(I)和/或 L 型钙通道(I)抑制的贡献导致 APD 发生实质性改变,这支持了使用包括 I、I 和 I 在内的少数心脏离子通道的输入进行计算机建模的药理学相关性,至少在药物开发的早期阶段是如此。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验