Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands.
Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
J Mol Cell Cardiol. 2020 Sep;146:69-83. doi: 10.1016/j.yjmcc.2020.07.007. Epub 2020 Jul 22.
Acute excessive ethyl alcohol (ethanol) consumption alters cardiac electrophysiology and can evoke cardiac arrhythmias, e.g., in 'holiday heart syndrome'. Ethanol acutely modulates numerous targets in cardiomyocytes, including ion channels, Ca-handling proteins and gap junctions. However, the mechanisms underlying ethanol-induced arrhythmogenesis remain incompletely understood and difficult to study experimentally due to the multiple electrophysiological targets involved and their potential interactions with preexisting electrophysiological or structural substrates. Here, we employed cellular- and tissue-level in-silico analyses to characterize the acute effects of ethanol on cardiac electrophysiology and arrhythmogenesis. Acute electrophysiological effects of ethanol were incorporated into human atrial and ventricular cardiomyocyte computer models: reduced I, I, I, I and I, dual effects on I and I (inhibition at low and augmentation at high concentrations), and increased I and SR Ca leak. Multiscale simulations in the absence or presence of preexistent atrial fibrillation or heart-failure-related remodeling demonstrated that low ethanol concentrations prolonged atrial action-potential duration (APD) without effects on ventricular APD. Conversely, high ethanol concentrations abbreviated atrial APD and prolonged ventricular APD. High ethanol concentrations promoted reentry in tissue simulations, but the extent of reentry promotion was dependent on the presence of altered intercellular coupling, and the degree, type, and pattern of fibrosis. Taken together, these data provide novel mechanistic insight into the potential proarrhythmic interactions between a preexisting substrate and acute changes in cardiac electrophysiology. In particular, acute ethanol exposure has concentration-dependent electrophysiological effects that differ between atria and ventricles, and between healthy and diseased hearts. Low concentrations of ethanol can have anti-fibrillatory effects in atria, whereas high concentrations promote the inducibility and maintenance of reentrant atrial and ventricular arrhythmias, supporting a role for limiting alcohol intake as part of cardiac arrhythmia management.
急性过量乙醇(乙醇)摄入会改变心脏电生理,并可能引发心律失常,例如“假日心脏综合征”。乙醇急性调节心肌细胞中的众多靶标,包括离子通道、钙处理蛋白和缝隙连接。然而,乙醇诱导心律失常发生的机制仍不完全清楚,由于涉及的多个电生理靶点及其与预先存在的电生理或结构底物的潜在相互作用,难以进行实验研究。在这里,我们采用细胞和组织水平的计算机模拟分析来描述乙醇对心脏电生理和心律失常发生的急性影响。将乙醇的急性电生理作用纳入人类心房和心室心肌细胞计算机模型中:I、I、I、I 和 I 减小,I 和 I 的双重作用(低浓度时抑制,高浓度时增强),以及 I 和 SR 钙泄漏增加。在不存在或存在先前存在的心房颤动或心力衰竭相关重构的情况下进行多尺度模拟表明,低乙醇浓度延长心房动作电位持续时间(APD),而对心室 APD 没有影响。相反,高乙醇浓度缩短心房 APD 并延长心室 APD。高乙醇浓度促进组织模拟中的折返,但是折返促进的程度取决于细胞间耦合的改变、纤维化的程度、类型和模式。总之,这些数据为预先存在的基质与心脏电生理急性变化之间潜在的致心律失常相互作用提供了新的机制见解。特别是,急性乙醇暴露具有在心房和心室之间以及健康和患病心脏之间存在浓度依赖性电生理作用的差异。低浓度的乙醇在心房中可能具有抗纤颤作用,而高浓度则促进折返性心房和室性心律失常的诱导和维持,支持限制饮酒作为心律失常管理的一部分的作用。