Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
BioTechMed Center, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
J Phys Chem Lett. 2024 Mar 21;15(11):3142-3148. doi: 10.1021/acs.jpclett.3c03589. Epub 2024 Mar 13.
G-quadruplexes (G4s) are nucleic acid structures crucial for the regulation of gene expression and genome maintenance. While they hold promise as nanodevice components, achieving desired G4 folds requires understanding the interplay between stability and structural properties, like helicity. Although right-handed G4 structures dominate the experimental data, the molecular basis for this preference over left-handed helicity is unclear. To address this, we employ all-atom molecular dynamics simulations and quantum chemical methods. Our results reveal that right-handed G4s exhibit greater thermodynamic and kinetic stability as a result of favorable sugar-phosphate backbone conformations in guanine tracts. Moreover, while hydrogen-bonding patterns influence helicity-specific G4 loop conformations, they minimally affect stability differences. We also elucidate the strong correlation between helicity and the strand progression direction, essential for G4 structures. These findings deepen our understanding of G4s, providing molecular-level insights into their structural and energetic preferences, which could inform the design of novel nanodevices.
四链体(G4s)是调控基因表达和基因组维护的关键核酸结构。虽然它们有望成为纳米器件的组成部分,但要实现所需的 G4 折叠,需要了解稳定性和结构特性(如螺旋性)之间的相互作用。尽管右手 G4 结构在实验数据中占主导地位,但这种偏爱右手螺旋性而不是左手螺旋性的分子基础尚不清楚。为了解决这个问题,我们采用了全原子分子动力学模拟和量子化学方法。我们的结果表明,右手 G4s 由于鸟嘌呤链段中有利的糖-磷酸骨架构象,表现出更大的热力学和动力学稳定性。此外,虽然氢键模式影响特定于螺旋的 G4 环构象,但它们对稳定性差异的影响最小。我们还阐明了螺旋性与链进展方向之间的强相关性,这对于 G4 结构至关重要。这些发现深化了我们对 G4s 的理解,提供了有关其结构和能量偏好的分子水平见解,这可能为新型纳米器件的设计提供信息。