Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Chem Soc Rev. 2022 Aug 30;51(17):7631-7661. doi: 10.1039/d2cs00317a.
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
四链体作为生物学、化学、纳米技术和材料科学中的功能成分引起了越来越多的关注。特别是,四链体的可逆动态构象变化为 DNA 纳米结构的切换、DNA 组装的催化功能的可逆控制以及材料性质和功能的切换提供了多种手段。本文综述了四链体作为核心功能和结构基序的可切换动态构象变化,这些基序在 DNA 纳米技术和材料科学中具有广泛的应用。四链体的动态构象变化对 DNA 开关和 DNA 机器的发展有重大影响。四链体与酶的整合产生了超分子组装体,这些组装体具有由动态四链体拓扑引导的可切换催化功能。此外,四链体作为重要的构建块,用于操作构象动态网络和瞬态耗散网络,模拟复杂的生物动态电路。此外,四链体与折纸瓦片等 DNA 纳米结构的整合为这些静态框架引入了动态和机械特性。除了溶液中四链体结构的动态操作之外,四链体在电极或纳米粒子等块状表面上的组装为设计各种电化学和光电化学器件以及切换纳米粒子的动态聚集/解聚集提供了多种手段,导致纳米粒子组装体显示出可切换的光学性质。最后,水凝胶、水凝胶微胶囊或纳米粒子载体(如 SiO2 纳米粒子或金属有机框架纳米粒子)的功能化,产生了具有形状记忆、自修复和控制药物释放性能的刺激响应材料。事实上,四链体修饰的纳米材料在纳米医学领域越来越受到关注。除了迄今为止令人印象深刻的基于四链体的科学进展外,未来仍有望取得令人兴奋的发展。该综述通过确定未来几年该领域面临的潜在机遇和挑战,达到了这一目标。