Suppr超能文献

基于 ARIMA-GRU/LSTM 混合模型的上海综合指数开盘价差建模。

Modeling opening price spread of Shanghai Composite Index based on ARIMA-GRU/LSTM hybrid model.

机构信息

School of Economics, Fudan University, ShangHai, PR China.

Department of Mathematics, University of Manchester, Manchester, United Kingdom.

出版信息

PLoS One. 2024 Mar 13;19(3):e0299164. doi: 10.1371/journal.pone.0299164. eCollection 2024.

Abstract

In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index's opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model's proficiency in linear trend analysis and the deep learning models' capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index's opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.

摘要

在金融市场的动态环境中,准确预测股票指数仍然是一项至关重要但具有挑战性的任务,这对于投资者和政策制定者来说都是必不可少的。本研究旨在提高预测上海综合指数开盘价价差的精度,这是反映市场波动和投资者情绪的关键指标。传统的时间序列模型,如 ARIMA,已经显示出在捕捉股票价格波动中固有的复杂非线性模式方面的局限性,这促使我们探索更先进的方法。本研究的目的是通过开发一种融合 ARIMA 与深度学习技术(特别是长短时记忆网络(LSTM)和门控循环单元网络(GRU))的混合模型来弥合预测精度的差距。这种新方法利用 ARIMA 模型在线性趋势分析方面的优势,以及深度学习模型在建模非线性依赖关系方面的能力,旨在为市场预测提供一个全面的工具。本研究利用涵盖 1990 年 12 月 20 日至 2023 年 6 月 2 日期间的综合数据集,开发并评估了 ARIMA、LSTM、GRU、ARIMA-LSTM 和 ARIMA-GRU 模型在预测上海综合指数开盘价价差方面的有效性。这些模型的评估基于关键统计指标,包括均方误差(MSE)和平均绝对误差(MAE),以衡量其预测准确性。研究结果表明,混合模型 ARIMA-LSTM 和 ARIMA-GRU 在预测上海综合指数开盘价价差方面的表现优于其独立模型。这一结果表明,将传统统计方法与先进的深度学习算法相结合可以提高股票市场预测的效果。本研究通过提供将不同建模方法集成到金融预测中的潜在益处的证据,为该领域做出了贡献,为投资策略和金融决策提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2a/10936816/1557e27a9584/pone.0299164.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验