Suppr超能文献

传统加密资产与可持续加密资产与气候变化的非线性关联:一种复杂系统建模方法。

Nonlinear connectedness of conventional crypto-assets and sustainable crypto-assets with climate change: A complex systems modelling approach.

作者信息

Khan Mushtaq Hussain, Macherla Shreya, Anupam Angesh

机构信息

Cardiff School of Management, Cardiff Metropolitan University, Cardiff, United Kingdom.

Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, United Kingdom.

出版信息

PLoS One. 2025 Feb 7;20(2):e0318647. doi: 10.1371/journal.pone.0318647. eCollection 2025.

Abstract

Earlier studies used classical time series models to forecast the nonlinear connectedness of conventional crypto-assets with CO2 emissions. For the first time, this study aims to provide a data-driven Nonlinear System Identification technique to study the nonlinear connectedness of crypto-assets with CO2 emissions. Using daily data from January 2, 2019, to March 31, 2023, we investigate the nonlinear connectedness among conventional crypto-assets, sustainable crypto-assets, and CO2 emissions based on our proposed model, Multiple Inputs Single Output (MISO) Nonlinear Autoregressive with Exogenous Inputs (NARX). Intriguingly, the forecasting accuracy of the proposed model improves with the inclusion of exogenous input variables (conventional and sustainable crypto-assets). Overall, our results reveal that conventional crypto-assets exhibit slightly stronger connectedness with CO2 emissions compared to sustainable crypto-assets. These findings suggest that, to some extent, sustainable crypto-assets provide a solution to the environmental issues related to CO2 emissions. However, further improvements in sustainable crypto-assets through technological advances are required to develop more energy-efficient decentralised finance consensus algorithms, with the aim of reshaping the cryptocurrency ecosystem into an environmentally sustainable market.

摘要

早期的研究使用经典时间序列模型来预测传统加密资产与二氧化碳排放之间的非线性关联。本研究首次旨在提供一种数据驱动的非线性系统识别技术,以研究加密资产与二氧化碳排放之间的非线性关联。利用2019年1月2日至2023年3月31日的每日数据,我们基于我们提出的多输入单输出(MISO)带外生输入的非线性自回归(NARX)模型,研究传统加密资产、可持续加密资产和二氧化碳排放之间的非线性关联。有趣的是,所提出模型的预测准确性随着外生输入变量(传统和可持续加密资产)的纳入而提高。总体而言,我们的结果表明,与可持续加密资产相比,传统加密资产与二氧化碳排放之间的关联性略强。这些发现表明,在某种程度上,可持续加密资产为与二氧化碳排放相关的环境问题提供了一种解决方案。然而,需要通过技术进步进一步改进可持续加密资产,以开发更节能的去中心化金融共识算法,目的是将加密货币生态系统重塑为一个环境可持续的市场。

相似文献

6
A model of the optimal selection of crypto assets.一种加密资产的最优选择模型。
R Soc Open Sci. 2020 Aug 12;7(8):191863. doi: 10.1098/rsos.191863. eCollection 2020 Aug.
8
Climate Sustainability through AI-Crypto Synergies and Energy Transition in the Digital Landscape to Cut 0.7 GtCOe by 2030.
Environ Sci Technol. 2025 Apr 1;59(12):6061-6073. doi: 10.1021/acs.est.4c11477. Epub 2025 Feb 19.

本文引用的文献

2
Propagation of electrical signals by fungi.真菌传播电信号。
Biosystems. 2023 Jul;229:104933. doi: 10.1016/j.biosystems.2023.104933. Epub 2023 May 29.
4
Analyzing asymmetric effects of cryptocurrency demand on environmental sustainability.分析加密货币需求对环境可持续性的非对称影响。
Environ Sci Pollut Res Int. 2022 May;29(21):31723-31733. doi: 10.1007/s11356-021-17998-y. Epub 2022 Jan 11.
6
Energy Consumption of Cryptocurrencies Beyond Bitcoin.除比特币之外的加密货币的能源消耗
Joule. 2020 Sep 16;4(9):1843-1846. doi: 10.1016/j.joule.2020.07.013. Epub 2020 Aug 4.
8
NARMAX representation and identification of ankle dynamics.踝关节动力学的NARMAX表示与识别
IEEE Trans Biomed Eng. 2003 Jan;50(1):70-81. doi: 10.1109/TBME.2002.803507.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验