Khan Mushtaq Hussain, Macherla Shreya, Anupam Angesh
Cardiff School of Management, Cardiff Metropolitan University, Cardiff, United Kingdom.
Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, United Kingdom.
PLoS One. 2025 Feb 7;20(2):e0318647. doi: 10.1371/journal.pone.0318647. eCollection 2025.
Earlier studies used classical time series models to forecast the nonlinear connectedness of conventional crypto-assets with CO2 emissions. For the first time, this study aims to provide a data-driven Nonlinear System Identification technique to study the nonlinear connectedness of crypto-assets with CO2 emissions. Using daily data from January 2, 2019, to March 31, 2023, we investigate the nonlinear connectedness among conventional crypto-assets, sustainable crypto-assets, and CO2 emissions based on our proposed model, Multiple Inputs Single Output (MISO) Nonlinear Autoregressive with Exogenous Inputs (NARX). Intriguingly, the forecasting accuracy of the proposed model improves with the inclusion of exogenous input variables (conventional and sustainable crypto-assets). Overall, our results reveal that conventional crypto-assets exhibit slightly stronger connectedness with CO2 emissions compared to sustainable crypto-assets. These findings suggest that, to some extent, sustainable crypto-assets provide a solution to the environmental issues related to CO2 emissions. However, further improvements in sustainable crypto-assets through technological advances are required to develop more energy-efficient decentralised finance consensus algorithms, with the aim of reshaping the cryptocurrency ecosystem into an environmentally sustainable market.
早期的研究使用经典时间序列模型来预测传统加密资产与二氧化碳排放之间的非线性关联。本研究首次旨在提供一种数据驱动的非线性系统识别技术,以研究加密资产与二氧化碳排放之间的非线性关联。利用2019年1月2日至2023年3月31日的每日数据,我们基于我们提出的多输入单输出(MISO)带外生输入的非线性自回归(NARX)模型,研究传统加密资产、可持续加密资产和二氧化碳排放之间的非线性关联。有趣的是,所提出模型的预测准确性随着外生输入变量(传统和可持续加密资产)的纳入而提高。总体而言,我们的结果表明,与可持续加密资产相比,传统加密资产与二氧化碳排放之间的关联性略强。这些发现表明,在某种程度上,可持续加密资产为与二氧化碳排放相关的环境问题提供了一种解决方案。然而,需要通过技术进步进一步改进可持续加密资产,以开发更节能的去中心化金融共识算法,目的是将加密货币生态系统重塑为一个环境可持续的市场。