Suppr超能文献

利用 Prophet、ARIMA 和堆叠式 LSTM-GRU 混合模型预测印度的 COVID-19 疫情。

Forecasting COVID-19 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India.

机构信息

Department of Computer Science and Engineering, National Institute of Technology Puducherry, Karaikal, India.

Department of Computer Science and Engineering, Indian Institute of Information Technology Tiruchirappalli, Trichy, India.

出版信息

Comput Math Methods Med. 2022 May 5;2022:1556025. doi: 10.1155/2022/1556025. eCollection 2022.

Abstract

Due to the proliferation of COVID-19, the world is in a terrible condition and human life is at risk. The SARS-CoV-2 virus had a significant impact on public health, social issues, and financial issues. Thousands of individuals are infected on a regular basis in India, which is one of the populations most seriously impacted by the pandemic. Despite modern medical and technical technology, predicting the spread of the virus has been extremely difficult. Predictive models have been used by health systems such as hospitals, to get insight into the influence of COVID-19 on outbreaks and possible resources, by minimizing the dangers of transmission. As a result, the main focus of this research is on building a COVID-19 predictive analytic technique. In the Indian dataset, Prophet, ARIMA, and stacked LSTM-GRU models were employed to forecast the number of confirmed and active cases. State-of-the-art models such as the recurrent neural network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), linear regression, polynomial regression, autoregressive integrated moving average (ARIMA), and Prophet were used to compare the outcomes of the prediction. After predictive research, the stacked LSTM-GRU model forecast was found to be more consistent than existing models, with better prediction results. Although the stacked model necessitates a large dataset for training, it aids in creating a higher level of abstraction in the final results and the maximization of the model's memory size. The GRU, on the other hand, assists in vanishing gradient resolution. The study findings reveal that the proposed stacked LSTM and GRU model outperforms all other models in terms of square and RMSE and that the coupled stacked LSTM and GRU model outperforms all other models in terms of square and RMSE. This forecasting aids in determining the future transmission paths of the virus.

摘要

由于 COVID-19 的蔓延,世界处于可怕的境地,人类生命受到威胁。SARS-CoV-2 病毒对公共卫生、社会问题和财政问题产生了重大影响。印度定期有数千人感染,是受大流行影响最严重的人群之一。尽管有现代医学和技术,但预测病毒的传播一直非常困难。医院等卫生系统使用预测模型来深入了解 COVID-19 对疫情爆发和可能资源的影响,从而最大程度地减少传播的危险。因此,本研究的主要重点是构建 COVID-19 预测分析技术。在印度数据集上,使用 Prophet、ARIMA 和堆叠 LSTM-GRU 模型来预测确诊病例和活跃病例的数量。使用最先进的模型,如递归神经网络(RNN)、门控循环单元(GRU)、长短期记忆(LSTM)、线性回归、多项式回归、自回归综合移动平均(ARIMA)和 Prophet 来比较预测结果。经过预测研究,发现堆叠 LSTM-GRU 模型的预测结果比现有模型更一致,预测结果更好。虽然堆叠模型需要大量数据集进行训练,但它有助于在最终结果中创建更高层次的抽象,并最大化模型的记忆大小。另一方面,GRU 有助于解决梯度消失问题。研究结果表明,所提出的堆叠 LSTM 和 GRU 模型在均方误差和 RMSE 方面优于所有其他模型,而耦合的堆叠 LSTM 和 GRU 模型在均方误差和 RMSE 方面优于所有其他模型。这种预测有助于确定病毒未来的传播路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31e/9070409/cb486d57b8c5/CMMM2022-1556025.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验