Department of Microbiology, Panjab University, Chandigarh, 160014, India.
Arch Microbiol. 2024 Mar 13;206(4):158. doi: 10.1007/s00203-024-03919-3.
Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.
量子点 (QDs) 作为多功能纳米材料脱颖而出,其起源涵盖有机、无机和天然来源,彻底改变了各种生物医学应用,特别是在对抗致病生物膜形成方面。生物膜是由微生物群落包裹在胞外多糖基质中的复杂结构,由于其高度的耐受性和耐药性,对传统抗生素构成了严峻挑战,加剧了抗生素治疗的疗效问题。QDs 提供了一种有前途的解决方案,采用光热或光动力疗法等物理机制来破坏生物膜。与传统抗生素方法相比,它们的疗效值得注意,具有更低的耐药性和广谱作用。QDs 的稳定性和耐久性确保了生物膜活性的持续,即使在具有挑战性的环境条件下也是如此。
本综述深入探讨了碳量子点 (CQDs) 的合成、性质和应用,CQDs 是最广泛使用的 QDs,展示了开创性的发展,使这些纳米材料处于前沿研究和创新的前沿。这些纳米材料表现出多方面的机制,破坏细胞壁和细胞膜,产生活性氧物种 (ROS),并与核酸物质结合,有效抑制微生物增殖。这为医疗干预提供了变革性的可能性,使我们深入了解生物膜动力学。然而,尺寸控制方面的挑战需要持续的研究来改进制造技术,确保无缺陷的表面,并优化生物活性。
QDs 作为微观但强大的工具出现,有望为我们带来一个光明的未来,在这个未来中,量子奇迹为解决致病生物膜带来的持久挑战提供了创新的解决方案。因此,本综述旨在探索 QDs 作为抑制致病微生物生物膜的潜在剂,阐明其潜在机制,解决当前挑战,并突出其有前途的未来潜力。
ACS Appl Bio Mater. 2024-5-20
Int J Nanomedicine. 2020-7-31
ACS Infect Dis. 2024-4-12
Adv Healthc Mater. 2023-9
Biol Trace Elem Res. 2024-1
Front Microbiol. 2023-4-4
Molecules. 2023-3-19
Molecules. 2023-3-7