Saint Louis University School of Medicine, Department of Medicine, Division of Infectious Diseases Allergy & Immunology, Saint Louis, MO.
Department of Medicine, Division of Infectious Diseases, University of Louisville School of Medicine, Louisville, KY.
Am J Infect Control. 2024 Jun;52(6):625-629. doi: 10.1016/j.ajic.2024.02.007. Epub 2024 Mar 14.
Health care-associated infection (HAI) surveillance is vital for safety in health care settings. It helps identify infection risk factors, enhancing patient safety and quality improvement. However, HAI surveillance is complex, demanding specialized knowledge and resources. This study investigates the use of artificial intelligence (AI), particularly generative large language models, to improve HAI surveillance.
We assessed 2 AI agents, OpenAI's chatGPT plus (GPT-4) and a Mixtral 8×7b-based local model, for their ability to identify Central Line-Associated Bloodstream Infection (CLABSI) and Catheter-Associated Urinary Tract Infection (CAUTI) from 6 National Health Care Safety Network training scenarios. The complexity of these scenarios was analyzed, and responses were matched against expert opinions.
Both AI models accurately identified CLABSI and CAUTI in all scenarios when given clear prompts. Challenges appeared with ambiguous prompts including Arabic numeral dates, abbreviations, and special characters, causing occasional inaccuracies in repeated tests.
The study demonstrates AI's potential in accurately identifying HAIs like CLABSI and CAUTI. Clear, specific prompts are crucial for reliable AI responses, highlighting the need for human oversight in AI-assisted HAI surveillance.
AI shows promise in enhancing HAI surveillance, potentially streamlining tasks, and freeing health care staff for patient-focused activities. Effective AI use requires user education and ongoing AI model refinement.
医疗保健相关感染(HAI)监测对于医疗保健环境的安全至关重要。它有助于识别感染风险因素,提高患者安全性和质量改进。然而,HAI 监测很复杂,需要专门的知识和资源。本研究调查了人工智能(AI)的使用,特别是生成式大型语言模型,以改善 HAI 监测。
我们评估了 2 种 AI 代理,OpenAI 的 chatGPT plus(GPT-4)和基于 Mixtral 8×7b 的本地模型,以评估它们从 6 个国家卫生保健安全网络培训场景中识别中心静脉相关血流感染(CLABSI)和导管相关尿路感染(CAUTI)的能力。分析了这些场景的复杂性,并将响应与专家意见进行了匹配。
当给予明确提示时,这两种 AI 模型都能准确识别所有场景中的 CLABSI 和 CAUTI。当提示不明确时,包括阿拉伯数字日期、缩写和特殊字符,偶尔会导致在重复测试中出现不准确的情况。
该研究表明 AI 在准确识别 HAI 方面具有潜力,如 CLABSI 和 CAUTI。明确、具体的提示对于可靠的 AI 响应至关重要,这凸显了在 AI 辅助 HAI 监测中需要人工监督的必要性。
AI 在增强 HAI 监测方面具有潜力,可能简化任务,并使医疗保健人员能够专注于患者活动。有效的 AI 使用需要用户教育和持续的 AI 模型改进。