Suppr超能文献

将三级淋巴结构相关基因纳入计算模型,以评估胰腺癌的预后和免疫浸润。

Integrating tertiary lymphoid structure-associated genes into computational models to evaluate prognostication and immune infiltration in pancreatic cancer.

机构信息

Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China.

Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China.

出版信息

J Leukoc Biol. 2024 Sep 2;116(3):589-600. doi: 10.1093/jleuko/qiae067.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor response to all therapeutic modalities and dismal prognosis. The presence of tertiary lymphoid structures (TLSs) in various solid cancers is of crucial prognostic significance, highlighting the intricate interplay between the tumor microenvironment and immune cells aggregation. However, the extent to which TLSs and immune status affect PDAC prognosis remains incompletely understood. Here, we sought to unveil the unique properties of TLSs in PDAC by leveraging both single-cell and bulk transcriptomics, culminating in a risk model that predicts clinical outcomes. We used TLS scores based on a 12-gene (CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11, and CXCL13) and 9-gene (PTGDS, RBP5, EIF1AY, CETP, SKAP1, LAT, CCR6, CD1D, and CD79B) signature, respectively, and examined their distribution in cell clusters of single-cell data from PDAC samples. The markers involved in these clusters were selected to develop a prognostic model using The Cancer Genome Atlas Program database as the training cohort and Gene Expression Omnibus database as the validation cohort. Further, we compared the immune infiltration, drug sensitivity, and enriched and differentially expressed genes between the high- and low-risk groups in our model. Therefore, we established a risk model that has significant implications for the prognostic assessment of PADC patients with remarkable differences in immune infiltration and chemosensitivity between the low- and high-risk groups. This paradigm established by TLS-related cell marker genes provides a prognostic prediction and a panel of novel therapeutic targets for exploring potential immunotherapy.

摘要

胰腺导管腺癌 (PDAC) 的特点是对所有治疗方式的反应都很差,预后不佳。在各种实体瘤中存在三级淋巴结构 (TLSs) 具有至关重要的预后意义,突出了肿瘤微环境与免疫细胞聚集之间的复杂相互作用。然而,TLSs 和免疫状态对 PDAC 预后的影响程度仍不完全清楚。在这里,我们通过单细胞和批量转录组学来揭示 PDAC 中 TLSs 的独特特性,最终建立了一个预测临床结果的风险模型。我们使用基于 12 个基因(CCL2、CCL3、CCL4、CCL5、CCL8、CCL18、CCL19、CCL21、CXCL9、CXCL10、CXCL11 和 CXCL13)和 9 个基因(PTGDS、RBP5、EIF1AY、CETP、SKAP1、LAT、CCR6、CD1D 和 CD79B)特征的 TLS 评分,并分别检查了它们在 PDAC 样本单细胞数据的细胞簇中的分布。使用癌症基因组图谱计划数据库作为训练队列和基因表达综合数据库作为验证队列,我们选择这些簇中的标记物来开发预后模型。此外,我们比较了我们模型中高低风险组之间的免疫浸润、药物敏感性以及富集和差异表达基因。因此,我们建立了一个风险模型,该模型对 PADC 患者的预后评估具有重要意义,高低风险组之间的免疫浸润和化学敏感性存在显著差异。TLS 相关细胞标记基因建立的这种范式为探索潜在的免疫治疗提供了预后预测和一组新的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验