Suppr超能文献

纳米颗粒在水中的电泳迁移率。

Electrophoretic Mobility of Nanoparticles in Water.

作者信息

Matyushov Dmitry V

机构信息

School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States.

出版信息

J Phys Chem B. 2024 Mar 28;128(12):2930-2938. doi: 10.1021/acs.jpcb.3c08172. Epub 2024 Mar 14.

Abstract

Classical equations for colloidal mobility anticipate linear proportionality between the nanoparticle mobility and zeta potential caused by the combined electrostatics of free charges at the nanoparticle and screening bound charges of the polar solvent. Polarization of the interfacial liquid, either spontaneous due to molecular asymmetry of the solvent (water) or induced by nonelectrostatic (e.g., charge-transfer) interactions, is responsible for a static interface charge adding to the overall electrokinetic charge of the nanoparticle. The particle mobility gains a constant offset term that is formally unrelated to the zeta potential. The static charge is multiplied by the static dielectric constant of the solvent in the expression for the electrokinetic charge and is sufficiently large in magnitude to cause electrophoretic mobility of even neutral particles. At a larger scale, nonlinear electrophoresis linked to the interface quadrupole moment can potentially contribute a sufficiently negative charge to a micrometer-size nanoparticle.

摘要

经典的胶体迁移率方程预计,纳米颗粒迁移率与ζ电位之间呈线性比例关系,这是由纳米颗粒上自由电荷的综合静电作用以及极性溶剂的屏蔽束缚电荷所导致的。界面液体的极化,要么是由于溶剂(水)的分子不对称性而自发产生的,要么是由非静电(如电荷转移)相互作用所诱导的,它会产生一个静态界面电荷,该电荷会加到纳米颗粒的整体动电电荷上。颗粒迁移率会获得一个与ζ电位形式上无关的恒定偏移项。在动电电荷的表达式中,静态电荷乘以溶剂的静态介电常数,其大小足以使即使是中性颗粒也产生电泳迁移率。在更大的尺度上,与界面四极矩相关的非线性电泳可能会给微米尺寸的纳米颗粒带来足够多的负电荷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验