Li Qingping, Wang Peng, Chen Yuxiang, Liao Xiangyue, Lam Kwok-Ho, Zhang Heng, Zheng Qiaoji, Lin Dunmin
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK.
J Colloid Interface Sci. 2024 Jun 15;664:400-408. doi: 10.1016/j.jcis.2024.03.056. Epub 2024 Mar 11.
Currently, conversion-type transition metal sulfides have been extensively favored as the anodes for sodium-ion batteries due to their excellent redox reversibility and high theoretical capacity; however, they generally suffer from large volume expansion and structural instability during repeatedly Na de/intercalation. Herein, spatially dual-confined Ni-doped CoS@NC@C microrods (Ni-CoS@NC@C) are developed via structural design, heteroatom doping and carbon confinement to boost sodium storage performance of the material. The morphology of one-dimensional-structured microrods effectively enlarges the electrode/electrolyte contact area, while the confinement of dual-carbon layers greatly alleviates the volume change-induced stress, pulverization, agglomeration of the material during charging and discharging. Moreover, the introduction of Ni improves the electrical conductivity of the material by modulating the electronic structure and enlarges the interlayer distance to accelerate Na diffusion. Accordingly, the as-prepared Ni-CoS@NC@C exhibits superb electrochemical properties, delivering the satisfactory cycling performance of 526.6 mA h g after 250 cycles at 1 A g, excellent rate performance of 410.9 mA h g at 5 A g and superior long cycling life of 502.5 mA h g after 1,500 cycles at 5 A g. This study provides an innovative idea to improve sodium storage performance of conversion-type transition metal sulfides through the comprehensive strategy of structural design, heteroatom doping and carbon confinement.
目前,由于具有优异的氧化还原可逆性和高理论容量,转化型过渡金属硫化物已被广泛用作钠离子电池的负极材料;然而,在反复的钠嵌入/脱嵌过程中,它们通常会遭受较大的体积膨胀和结构不稳定性。在此,通过结构设计、杂原子掺杂和碳限制制备了空间双限域的镍掺杂硫化钴@氮掺杂碳@碳微棒(Ni-CoS@NC@C)以提高材料的储钠性能。一维结构微棒的形态有效地扩大了电极/电解质的接触面积,而双碳层的限制极大地减轻了充放电过程中体积变化引起的应力、材料的粉化和团聚。此外,镍的引入通过调节电子结构提高了材料的电导率,并扩大了层间距以加速钠扩散。因此,所制备的Ni-CoS@NC@C表现出优异的电化学性能,在1 A g下循环250次后具有526.6 mA h g令人满意的循环性能,在5 A g下具有410.9 mA h g优异的倍率性能,在5 A g下循环1500次后具有502.5 mA h g卓越的长循环寿命。本研究提供了一种创新思路,即通过结构设计、杂原子掺杂和碳限制的综合策略来提高转化型过渡金属硫化物的储钠性能。