Suppr超能文献

改进的嵌套 U 结构用于准确的甲襞毛细血管分割。

Improved nested U-structure for accurate nailfold capillary segmentation.

机构信息

School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.

School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China.

出版信息

Microvasc Res. 2024 Jul;154:104680. doi: 10.1016/j.mvr.2024.104680. Epub 2024 Mar 13.

Abstract

Changes in the structure and function of nailfold capillaries may be indicators of numerous diseases. Noninvasive diagnostic tools are commonly used for the extraction of morphological information from segmented nailfold capillaries to study physiological and pathological changes therein. However, current segmentation methods for nailfold capillaries cannot accurately separate capillaries from the background, resulting in issues such as unclear segmentation boundaries. Therefore, improving the accuracy of nailfold capillary segmentation is necessary to facilitate more efficient clinical diagnosis and research. Herein, we propose a nailfold capillary image segmentation method based on a U-Net backbone network combined with a Transformer structure. This method integrates the U-Net and Transformer networks to establish a decoder-encoder network, which inserts Transformer layers into the nested two-layer U-shaped architecture of the U-Net. This structure effectively extracts multiscale features within stages and aggregates multilevel features across stages to generate high-resolution feature maps. The experimental results demonstrate an overall accuracy of 98.23 %, a Dice coefficient of 88.56 %, and an IoU of 80.41 % compared to the ground truth. Furthermore, our proposed method improves the overall accuracy by approximately 2 %, 3 %, and 5 % compared to the original U-Net, Res-Unet, and U-Net, respectively. These results indicate that the Transformer-UNet network performs well in nailfold capillary image segmentation and provides more detailed and accurate information on the segmented nailfold capillary structure, which may aid clinicians in the more precise diagnosis and treatment of nailfold capillary-related diseases.

摘要

甲襞毛细血管的结构和功能的变化可能是许多疾病的指标。非侵入性诊断工具常用于从分割的甲襞毛细血管中提取形态信息,以研究其中的生理和病理变化。然而,目前用于分割甲襞毛细血管的方法不能准确地将毛细血管从背景中分离出来,导致分割边界不清晰等问题。因此,提高甲襞毛细血管分割的准确性对于促进更有效的临床诊断和研究是必要的。在此,我们提出了一种基于 U-Net 骨干网络与 Transformer 结构相结合的甲襞毛细血管图像分割方法。该方法将 U-Net 和 Transformer 网络集成到一个解码器-编码器网络中,在 U-Net 的嵌套双层 U 形结构中插入 Transformer 层。该结构有效地在各个阶段内提取多尺度特征,并在各个阶段之间聚合多层次特征,生成高分辨率特征图。实验结果表明,与真实值相比,该方法的总体准确率为 98.23%,Dice 系数为 88.56%,IoU 为 80.41%。此外,与原始 U-Net、Res-Unet 和 U-Net 相比,我们提出的方法的总体准确率分别提高了约 2%、3%和 5%。这些结果表明,Transformer-Unet 网络在甲襞毛细血管图像分割中表现良好,为分割的甲襞毛细血管结构提供了更详细和准确的信息,这可能有助于临床医生更精确地诊断和治疗与甲襞毛细血管相关的疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验