Suppr超能文献

一种用于甲襞毛细血管骨架线提取的单像素且无冗余的基于分支的算法。

A single-pixel and non-redundant branching-based algorithm for nailfold capillary skeleton line extraction.

作者信息

Zhou Bin, Yin Hao, Wu Yanxiong, Ye Qianyao, Lin Jianan, Ye Cong, Xie Mugui, Li Xiaosong, Bin Wei, Yang Zhimin

机构信息

School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China.

Ji Hua Laboratory, Foshan, China.

出版信息

Quant Imaging Med Surg. 2024 Oct 1;14(10):7442-7458. doi: 10.21037/qims-24-847. Epub 2024 Sep 26.

Abstract

BACKGROUND

Static nailfold capillary parameters are important parameters that reflect the health of the human body. Disease onset or progression is often accompanied by changes in the physiological parameters of the nailfold. Hence, the physiological parameters of the nailfold are closely related to the study of disease, with their automated and high-precision measurements playing a crucial role in these studies. Currently, manually measured values of the nailfold's parameters are the gold standard; however, they are time consuming and labor intensive, making the development of automated measurement methods essential. Most automated measurement methods use skeleton lines; however, current skeleton-thinning algorithms have non-single pixels and redundant branches that lead to reduced measurement accuracy. This study proposes a single-pixel and non-redundant branching-based skeleton line extraction algorithm for nailfold capillaries, which is then applied to nailfold static parameter calculations to improve accuracy.

METHODS

The algorithm includes deletion and restoration templates combined with the depth-first search method to obtain single-pixel skeleton lines without redundant branches. These lines are applied to the static nailfold capillary parameter measurement method based on digital image processing to calculate the blood vessel diameter.

RESULTS

The results show that the proposed method can obtain the single-pixel skeleton line without the redundant branches that are required for the parameter calculations and improve the accuracy of the nailfold capillary diameter measurement. Experiments showed that the root mean square errors (RMSEs) of the labeled apical diameter, arterial limb diameter, and venous limb diameter were 0.794, 0.756, and 0.830 µm, respectively, when the calculated results were compared with those of the manual calculations. According to the accuracy formula, the accuracy of the method in this study is 90%. We calculated the P values of the algorithmic and manual measurements to P<0.001 and found that the difference in the measurements of the proposed algorithm is statistically significant. Therefore, the method in this study has high sensitivity and specificity for the measurement of normal nailfold capillaries.

CONCLUSIONS

The proposed algorithm could obtain single-pixel skeleton lines without redundant branches, thereby improving the nailfold static parameter measurement accuracy.

摘要

背景

静态甲襞毛细血管参数是反映人体健康的重要参数。疾病的发生或进展通常伴随着甲襞生理参数的变化。因此,甲襞的生理参数与疾病研究密切相关,其自动化和高精度测量在这些研究中起着至关重要的作用。目前,甲襞参数的手动测量值是金标准;然而,它们既耗时又费力,因此开发自动化测量方法至关重要。大多数自动化测量方法使用骨架线;然而,当前的骨架细化算法存在非单像素和冗余分支,导致测量精度降低。本研究提出了一种基于单像素和无冗余分支的甲襞毛细血管骨架线提取算法,并将其应用于甲襞静态参数计算以提高精度。

方法

该算法包括结合深度优先搜索方法的删除和恢复模板,以获得无冗余分支的单像素骨架线。这些线应用于基于数字图像处理的静态甲襞毛细血管参数测量方法,以计算血管直径。

结果

结果表明,所提出的方法可以获得无冗余分支的单像素骨架线,这些分支是参数计算所必需的,并提高了甲襞毛细血管直径测量的准确性。实验表明,当将计算结果与手动计算结果进行比较时,标记的顶端直径、动脉分支直径和静脉分支直径的均方根误差(RMSE)分别为0.794μm、0.756μm和0.830μm。根据精度公式,本研究中该方法的精度为90%。我们计算了算法测量值与手动测量值的P值,P<0.001,发现所提出算法的测量差异具有统计学意义。因此,本研究中的方法对正常甲襞毛细血管的测量具有高灵敏度和特异性。

结论

所提出的算法可以获得无冗余分支的单像素骨架线,从而提高甲襞静态参数测量精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d20/11485390/8c6264b1ab2b/qims-14-10-7442-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验