Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
Sci Total Environ. 2024 May 10;924:171555. doi: 10.1016/j.scitotenv.2024.171555. Epub 2024 Mar 12.
Sludge is a major by-product and the final reservoir of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). Temperature-phased anaerobic digestion (TPAD), consisting of thermophilic anaerobic digestion (AD) (55 °C) and mesophilic AD processes (37 °C), has been implemented in WWTPs for sludge reduction while improving the biomethane production. However, the impact of TPAD on the ARGs' fate is still undiscovered in lab-scale experiments and full-scale WWTPs. This study, for the first time, investigated the fate of ARGs during the TPAD process across three seasons in a full-size WWTP. Ten typical ARGs and one integrase gene of class 1 integron (intI1) involving ARGs horizontal gene transfer were examined in sludge before and after each step of the TPAD process. TPAD reduced aac(6')-Ib-cr, blaTEM, drfA1, sul1, sul2, ermb, mefA, tetA, tetB and tetX by 87.3-100.0 %. TPAD reduced the overall average absolute abundance of targeted ARGs and intI1 by 92.39 % and 92.50 %, respectively. The abundance of targeted ARGs in sludge was higher in winter than in summer and autumn before and after TPAD. During the TPAD processes, thermophilic AD played a major role in the removal of ARGs, contributing to >60 % removal of ARGs, while the subsequent mesophilic AD contributed to a further 31 % removal of ARGs. The microbial community analysis revealed that thermophilic AD reduced the absolute abundance of ARGs hosts, antibiotic resistant bacteria. In addition, thermophilic AD reduced the abundance of the intI1, while the intI1 did not reproduce during the mesophilic AD, also contributing to a decline in the absolute abundance of ARGs in TPAD. This study demonstrates that TPAD can effectively reduce the abundance of ARGs in sludge, which will suppress the transmission of ARGs from sludge into the natural environment and deliver environmental and health benefits to our society.
污泥是废水处理厂(WWTP)中抗生素抗性基因(ARGs)的主要副产物和最终储存库。温度阶段性厌氧消化(TPAD)由嗜热厌氧消化(AD)(55°C)和中温 AD 过程(37°C)组成,已在 WWTP 中实施,以减少污泥量,同时提高生物甲烷产量。然而,在实验室规模实验和全规模 WWTP 中,TPAD 对 ARGs 命运的影响仍未被发现。本研究首次在一个全尺寸 WWTP 中,在三个季节内研究了 TPAD 过程中 ARGs 的命运。在 TPAD 过程的每一步之前和之后,在污泥中检查了涉及 ARGs 水平基因转移的十个典型 ARGs 和一个 1 类整合子(intI1)的整合酶基因。TPAD 将 aac(6')-Ib-cr、blaTEM、drfA1、sul1、sul2、ermb、mefA、tetA、tetB 和 tetX 的减少率分别达到 87.3-100.0%。TPAD 将目标 ARGs 和 intI1 的总平均绝对丰度分别减少了 92.39%和 92.50%。在 TPAD 前后,冬季污泥中目标 ARGs 的丰度高于夏季和秋季。在 TPAD 过程中,嗜热 AD 在 ARGs 的去除中起主要作用,贡献了>60%的 ARGs 去除,而随后的中温 AD 进一步贡献了 31%的 ARGs 去除。微生物群落分析表明,嗜热 AD 降低了 ARGs 宿主、抗生素抗性细菌的绝对丰度。此外,嗜热 AD 降低了 intI1 的丰度,而 intI1 在中温 AD 过程中没有繁殖,这也导致了 TPAD 中 ARGs 的绝对丰度下降。本研究表明,TPAD 可以有效地降低污泥中 ARGs 的丰度,从而抑制 ARGs 从污泥向自然环境的传播,并为我们的社会带来环境和健康益处。