Yang Tianzhen, Mao Haoning, Zhang Qianqian, Xu Chao, Gao Qiongzhi, Cai Xin, Zhang Shengsen, Fang Yueping, Zhou Xiaosong, Peng Feng, Yang Siyuan
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
Angew Chem Int Ed Engl. 2024 May 27;63(22):e202403022. doi: 10.1002/anie.202403022. Epub 2024 Apr 18.
Integrating solar energy into rechargeable battery systems represents a significant advancement towards sustainable energy storage solutions. Herein, we propose a win-win solution to reduce the shuttle effect of polysulfide and improve the photocorrosion stability of CdS, thereby enhancing the energy conversion efficiency of rGO/CdS-based photorechargeable integrated lithium-sulfur batteries (PRLSBs). Experimental results show that CdS can effectively anchor polysulfide under sunlight irradiation for 20 minutes. Under a high current density (1 C), the discharge-specific capacity of the PRLSBs increased to 971.30 mAh g, which is 113.3 % enhancement compared to that of under dark condition (857.49 mAh g). Remarkably, without an electrical power supply, the PRLSBs can maintain a 21 hours discharge process following merely 1.5 hours of light irradiation, achieving a breakthrough solar-to-electrical energy conversion efficiency of up to 5.04 %. Ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman analysis corroborate the effectiveness of this complementary weakness approach in bolstering redox kinetics and curtailing polysulfide dissolution in PRLSBs. This work showcases a feasible strategy to develop PRLSBs with potential dual-functional metal sulfide photoelectrodes, which will be of great interest in future-oriented off-grid photocell systems.
将太阳能集成到可充电电池系统中是朝着可持续储能解决方案迈出的重要一步。在此,我们提出了一种双赢的解决方案,以减少多硫化物的穿梭效应并提高硫化镉的光腐蚀稳定性,从而提高基于还原氧化石墨烯/硫化镉的光充电集成锂硫电池(PRLSB)的能量转换效率。实验结果表明,硫化镉在阳光照射20分钟的情况下能够有效地锚定多硫化物。在高电流密度(1C)下,PRLSB的放电比容量提高到971.30 mAh g,与黑暗条件下(857.49 mAh g)相比提高了113.3%。值得注意的是,在没有电源的情况下,PRLSB仅在光照1.5小时后就能维持21小时的放电过程,实现了高达5.04%的突破性太阳能到电能的转换效率。非原位X射线光电子能谱(XPS)和原位拉曼分析证实了这种互补弱点方法在增强PRLSB的氧化还原动力学和减少多硫化物溶解方面的有效性。这项工作展示了一种开发具有潜在双功能金属硫化物光电极的PRLSB的可行策略,这将在面向未来的离网光电池系统中引起极大兴趣。