Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
EMBO J. 2024 Apr;43(8):1545-1569. doi: 10.1038/s44318-024-00065-w. Epub 2024 Mar 14.
Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.
慢性缺氧的适应是通过蛋白质表达的变化来实现的,这些变化受缺氧诱导因子 1α(HIF1α)的控制,是癌细胞存活所必需的。然而,在 HIF1α 介导的转录程序完全建立之前,使癌细胞能够在早期缺氧中适应的机制仍知之甚少。在这里,我们在人类乳腺癌细胞中表明,在缺氧暴露后的 3 小时内,糖酵解通量以 HIF1α 独立的方式增加,但受到 NAD 可用性的限制。早期缺氧时的糖酵解 ATP 维持和细胞存活依赖于备用乳酸脱氢酶 A 能力以及谷氨酸-草酰乙酸转氨酶 1(GOT1)的活性,该酶为苹果酸脱氢酶 1(MDH1)衍生的 NAD 提供燃料。此外,GOT1 保持低 α-酮戊二酸水平,从而限制脯氨酰羟化酶的活性,以促进早期缺氧中的 HIF1α 稳定,并使晚期缺氧中的 HIF1α 靶基因表达更加强劲。我们的研究结果表明,在正常氧条件下,多种酶系统使细胞处于预备状态,准备好在氧气限制时支持增加的糖酵解和 HIF1α 稳定,直到需要更多时间的其他适应过程完全建立。