文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于角膜再生的3D生物打印技术进展

Advances in 3D Bioprinting for Corneal Regeneration.

作者信息

Hernández Juan, Santos Nicolás, Ahumada Manuel

机构信息

Escuela de Tecnología Médica, Facultad de Ciencias de la Vida, Universidad Viña del Mar, Viña del Mar 2572007, Chile.

Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.

出版信息

Gels. 2025 May 31;11(6):422. doi: 10.3390/gels11060422.


DOI:10.3390/gels11060422
PMID:40558721
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12192301/
Abstract

Worldwide, millions of people suffer from visual impairments, ranging from partial to total blindness, with far-reaching consequences on personal, societal, and governmental levels. Corneal-related issues are among the leading causes of blindness, with corneal transplantation (keratoplasty) being the primary treatment. However, the demand for donor tissues far exceeds supply. The rise of printing technologies marks a revolution in tissue engineering, with 3D bioprinting at the forefront of developing innovative tissue repair and replacement solutions. The cornea emerges as an ideal candidate for this technology due to its distinct layers (epithelium, stroma, and endothelium). From a materials engineering standpoint, these layers resemble a hydrogel structure that facilitates fabrication. This review explores advancements in 3D bioprinting, focusing on the methodologies developed for corneal tissue engineering. It highlights design and construction aspects, including biomechanical and biocompatibility properties essential for creating synthetic implants and corneal scaffolds through bioprinting. Additionally, the review discusses the challenges and opportunities that could further drive innovation in tissue engineering.

摘要

在全球范围内,数以百万计的人患有视力障碍,从部分失明到完全失明不等,这在个人、社会和政府层面都产生了深远影响。与角膜相关的问题是失明的主要原因之一,角膜移植(角膜成形术)是主要的治疗方法。然而,对供体组织的需求远远超过供应。打印技术的兴起标志着组织工程学的一场革命,其中3D生物打印处于开发创新组织修复和替换解决方案的前沿。由于角膜具有独特的层(上皮层、基质层和内皮细胞层),它成为这项技术的理想候选对象。从材料工程的角度来看,这些层类似于水凝胶结构,便于制造。本综述探讨了3D生物打印的进展,重点关注为角膜组织工程开发的方法。它强调了设计和构建方面,包括通过生物打印创建合成植入物和角膜支架所需的生物力学和生物相容性特性。此外,本综述还讨论了可能进一步推动组织工程创新的挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/4bf03fd3e7cc/gels-11-00422-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/9eb428eb5f3d/gels-11-00422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/647df6a8fe24/gels-11-00422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/dc817bf24ee4/gels-11-00422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/a56a8eae8d12/gels-11-00422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/ef36a797697e/gels-11-00422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/2241a1c54762/gels-11-00422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/0365a3f54122/gels-11-00422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/4cc84bf7294b/gels-11-00422-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/fee576b0db37/gels-11-00422-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/4bf03fd3e7cc/gels-11-00422-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/9eb428eb5f3d/gels-11-00422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/647df6a8fe24/gels-11-00422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/dc817bf24ee4/gels-11-00422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/a56a8eae8d12/gels-11-00422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/ef36a797697e/gels-11-00422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/2241a1c54762/gels-11-00422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/0365a3f54122/gels-11-00422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/4cc84bf7294b/gels-11-00422-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/fee576b0db37/gels-11-00422-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b354/12192301/4bf03fd3e7cc/gels-11-00422-g010.jpg

相似文献

[1]
Advances in 3D Bioprinting for Corneal Regeneration.

Gels. 2025-5-31

[2]
The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review.

Tissue Eng Part B Rev. 2023-4

[3]
Endothelial keratoplasty versus penetrating keratoplasty for Fuchs endothelial dystrophy.

Cochrane Database Syst Rev. 2011-7-6

[4]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[5]
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.

Autism Adulthood. 2025-5-28

[6]
Coaxial Bioprinting of Schwann Cells and Neural Stem Cells in a Three-Dimensional Microenvironment for the Repair of Peripheral Nerve Defects.

J Biomed Mater Res A. 2025-7

[7]
Incentives for preventing smoking in children and adolescents.

Cochrane Database Syst Rev. 2017-6-6

[8]
Interventions to prevent occupational noise-induced hearing loss.

Cochrane Database Syst Rev. 2017-7-7

[9]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[10]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

本文引用的文献

[1]
Digital light processing 3D bioprinting of biomimetic corneal stroma equivalent using gelatin methacryloyl and oxidized carboxymethylcellulose interpenetrating network hydrogel.

Biofabrication. 2025-2-10

[2]
Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering.

Polymers (Basel). 2024-10-12

[3]
Posttransplant complications: molecular mechanisms and therapeutic interventions.

MedComm (2020). 2024-9-2

[4]
Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development.

J Mater Chem B. 2024-7-10

[5]
Mimicking the Physicochemical Properties of the Cornea: A Low-Cost Approximation Using Highly Available Biopolymers.

Polymers (Basel). 2024-4-17

[6]
Ex vivo, in vivo and in silico studies of corneal biomechanics: a systematic review.

Phys Eng Sci Med. 2024-6

[7]
Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering.

ACS Appl Mater Interfaces. 2024-4-3

[8]
Bioprinting of human pluripotent stem cell derived corneal endothelial cells with hydrazone crosslinked hyaluronic acid bioink.

Stem Cell Res Ther. 2024-3-14

[9]
3D printing sequentially strengthening high-strength natural polymer hydrogel bilayer scaffold for cornea regeneration.

Regen Biomater. 2024-2-9

[10]
Fabrication of Micropatterns of Aligned Collagen Fibrils.

Langmuir. 2024-2-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索