PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, INSERM, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France.
Biophys J. 2024 Apr 16;123(8):1006-1014. doi: 10.1016/j.bpj.2024.03.019. Epub 2024 Mar 14.
Plasma membrane damage occurs in healthy cells and more frequently in cancer cells where high growth rates and metastasis result in frequent membrane damage. The annexin family of proteins plays a key role in membrane repair. Annexins are recruited at the membrane injury site by Ca and repair the damaged membrane in concert with several other proteins. Annexin A4 (ANXA4) and ANXA5 form trimers at the bilayer surface, and previous simulations show that the trimers induce high local negative membrane curvature on a flat bilayer. The membrane-curvature-inducing property of ANXA5 is presumed to be vital to the membrane repair mechanism. A previously proposed descriptive model hypothesizes that ANXA5-mediated curvature force is utilized at the free edge of the membrane at a wound site to pull the wound edges together, resulting in the formation of a "neck"-shaped structure, which, when combined with a constriction force exerted by ANXA6, leads to membrane repair. The molecular details and mechanisms of repair remain unknown, in part because the membrane edge is a transient structure that is difficult to investigate both experimentally and computationally. For the first time, we investigate the impact of ANXA5 near a membrane edge, which is modeled by a bicelle under periodic boundary conditions. ANXA5 trimers induce local curvature on the membrane leading to global bending of the bicelle. The global curvature depends on the density of annexins on the bicelle, and the curvature increases with the ANXA5 concentration until it reaches a plateau. The simulations suggest that not only do annexins induce local membrane curvature, but they can change the overall shape of a free-standing membrane. We also demonstrate that ANXA5 trimers reduce the rate of phosphatidylserine lipid diffusion from the cytoplasmic to the exoplasmic leaflet along the edge of the bicelle. In this way, membrane-bound annexins can potentially delay the apoptotic signal triggered by the presence of phosphatidylserine lipids in the outer leaflet, thus biding time for repair of the membrane hole. Our findings provide new insights into the role of ANXA5 at the edges of the membrane (the injury site) and support the curvature-constriction model of membrane repair.
质膜损伤发生在健康细胞中,而在癌症细胞中更为频繁,因为高生长率和转移导致频繁的膜损伤。膜联蛋白家族的蛋白质在膜修复中起着关键作用。膜联蛋白通过 Ca2+ 被募集到膜损伤部位,并与其他几种蛋白质一起修复受损的膜。膜联蛋白 A4(ANXA4)和 ANXA5 在双层表面形成三聚体,先前的模拟表明三聚体在平坦双层上诱导高局部负膜曲率。假定 ANXA5 的膜曲率诱导特性对于膜修复机制至关重要。先前提出的描述性模型假设,ANXA5 介导的曲率力在伤口部位的膜自由边缘处被利用,以将伤口边缘拉在一起,从而形成“颈”形结构,当与由 ANXA6 施加的收缩力结合时,导致膜修复。修复的分子细节和机制仍不清楚,部分原因是膜边缘是一种瞬态结构,在实验和计算上都难以研究。我们首次研究了膜边缘附近的 ANXA5 的影响,该膜边缘由周期性边界条件下的双脂体建模。膜联蛋白 A5 三聚体在膜上诱导局部曲率,导致双脂体的全局弯曲。全局曲率取决于双脂体上膜联蛋白的密度,并且曲率随 ANXA5 浓度增加而增加,直到达到平台。模拟表明,膜联蛋白不仅诱导局部膜曲率,而且可以改变独立膜的整体形状。我们还证明膜联蛋白 A5 三聚体降低了磷脂酰丝氨酸脂质从细胞质到外叶层在双脂体边缘的扩散速度。通过这种方式,膜结合的膜联蛋白可以潜在地延迟由外叶层中磷脂酰丝氨酸脂质存在引发的凋亡信号,从而为膜孔的修复争取时间。我们的发现为膜联蛋白 A5 在膜边缘(损伤部位)的作用提供了新的见解,并支持膜修复的曲率-收缩模型。