Suppr超能文献

受小胶质细胞启发的生物正交间充质干细胞生物工程系统创建宜居微环境以增强缺血性中风恢复——应激效应。

Bioorthogonal microglia-inspired mesenchymal stem cell bioengineering system creates livable niches for enhancing ischemic stroke recovery the hormesis.

作者信息

Xu Jianpei, Sun Yinzhe, You Yang, Zhang Yuwen, Huang Dan, Zhou Songlei, Liu Yipu, Tong Shiqiang, Ma Fenfen, Song Qingxiang, Dai Chengxiang, Li Suke, Lei Jigang, Wang Zhihua, Gao Xiaoling, Chen Jun

机构信息

Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.

Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.

出版信息

Acta Pharm Sin B. 2024 Mar;14(3):1412-1427. doi: 10.1016/j.apsb.2023.11.009. Epub 2023 Nov 8.

Abstract

Mesenchymal stem cells (MSCs) experience substantial viability issues in the stroke infarct region, limiting their therapeutic efficacy and clinical translation. High levels of deadly reactive oxygen radicals (ROS) and proinflammatory cytokines (PC) in the infarct milieu kill transplanted MSCs, whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs' viability. Based on the intrinsic hormesis effects in cellular biology, we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy. This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer. In this system, extracellular ROS-scavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a micro-livable niche at the level of a single MSC for transplantation. Meanwhile, the infarct's inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing. The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days. This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.

摘要

间充质干细胞(MSCs)在中风梗死区域存在严重的生存问题,限制了它们的治疗效果和临床应用。梗死环境中高水平的致命活性氧自由基(ROS)和促炎细胞因子(PC)会杀死移植的MSCs,而低水平的有益ROS和PC则会刺激并提高植入的MSCs的活力。基于细胞生物学中的内在兴奋效应,我们构建了一个受小胶质细胞启发的MSCs生物工程系统,将有害的高水平ROS和PC转化为活力增强剂,以强化MSCs治疗。该系统通过用小胶质细胞膜包裹的纳米颗粒和抗氧化细胞外保护层对代谢糖工程化的MSCs进行生物正交修饰来实现。在这个系统中,细胞外ROS清除层和PC吸收层有效地缓冲了有害影响,并在单个待移植的MSCs水平上建立了一个微生存生态位。同时,梗死的无生命环境在组织水平上被转化为一个新的生存生态位,以促进愈合。工程化的MSCs在移植后7天的存活率比天然MSCs高5倍,并且在长达28天的时间里对中风恢复表现出卓越的治疗效果。这个活力增强系统显示出加速MSCs治疗临床应用和促进中风恢复的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e87b/10935060/58bde8d6d9d2/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验