Suppr超能文献

药物相似性预测的当前趋势与挑战:它们具有通用性和可解释性吗?

Current Trends and Challenges in Drug-Likeness Prediction: Are They Generalizable and Interpretable?

作者信息

Zhu Wenyu, Wang Yanxing, Niu Yan, Zhang Liangren, Liu Zhenming

机构信息

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China.

Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China.

出版信息

Health Data Sci. 2023 Nov 10;3:0098. doi: 10.34133/hds.0098. eCollection 2023.

Abstract

: Drug-likeness of a compound is an overall assessment of its potential to succeed in clinical trials, and is essential for economizing research expenditures by filtering compounds with unfavorable properties and poor development potential. To this end, a robust drug-likeness prediction method is indispensable. Various approaches, including discriminative rules, statistical models, and machine learning models, have been developed to predict drug-likeness based on physiochemical properties and structural features. Notably, recent advancements in novel deep learning techniques have significantly advanced drug-likeness prediction, especially in classification performance. : In this review, we addressed the evolving landscape of drug-likeness prediction, with emphasis on methods employing novel deep learning techniques, and highlighted the current challenges in drug-likeness prediction, specifically regarding the aspects of generalization and interpretability. Moreover, we explored potential remedies and outlined promising avenues for future research. : Despite the hurdles of generalization and interpretability, novel deep learning techniques have great potential in drug-likeness prediction and are worthy of further research efforts.

摘要

化合物的类药性是对其在临床试验中取得成功潜力的全面评估,对于通过筛选具有不良性质和低开发潜力的化合物来节省研究开支至关重要。为此,一种强大的类药性预测方法必不可少。已经开发了各种方法,包括判别规则、统计模型和机器学习模型,以基于物理化学性质和结构特征来预测类药性。值得注意的是,新型深度学习技术的最新进展显著推动了类药性预测,尤其是在分类性能方面。在本综述中,我们阐述了类药性预测不断演变的格局,重点关注采用新型深度学习技术的方法,并突出了类药性预测当前面临的挑战,特别是在泛化和可解释性方面。此外,我们探索了潜在的补救措施,并概述了未来研究的有前景的途径。尽管存在泛化和可解释性的障碍,但新型深度学习技术在类药性预测方面具有巨大潜力,值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/398d/10880170/5b038011eea2/hds.0098.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验