Suppr超能文献

数十吉赫兹下非线性极化动力学的测量

Measurements of Nonlinear Polarization Dynamics in the Tens of Gigahertz.

作者信息

Hagerstrom Aaron M, Marksz Eric J, Zhang Xiaohang, Lu Xifeng, Long Christian J, Booth James C, Takeuchi Ichiro, Orloff Nathan D

机构信息

Communications Technology Laboratory (CTL), National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, Colorado 80305, USA.

Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

Phys Rev Appl. 2020;13(4). doi: 10.1103/physrevapplied.13.044026.

Abstract

Frequency-dependent linear-permittivity measurements are commonplace in the literature, providing key insights into the structure of dielectric materials. These measurements describe a material's dynamic response to a small applied electric field. However, nonlinear dielectric materials are widely used for their responses to large applied fields, including switching in ferroelectric materials, and field tuning of the permittivity in paraelectric materials. These behaviors are described by nonlinear permittivity. Nonlinear-permittivity measurements are fraught with technical challenges because of the complex electrical coupling between a sample and its environment. Here, we describe a technique for measuring the complex nonlinear permittivity that circumvents many of the difficulties associated with other approaches. We validate this technique by measuring the nonlinear permittivity of a tunable thin film up to 40 GHz and comparing our results with a phenomenological model. These measurements provide insight into the dynamics of nonlinear dielectric materials down to picosecond timescales.

摘要

频率相关的线性介电常数测量在文献中很常见,它能为介电材料的结构提供关键见解。这些测量描述了材料对小外加电场的动态响应。然而,非线性介电材料因其对大外加电场的响应而被广泛使用,包括铁电材料中的开关现象以及顺电材料中介电常数的场调谐。这些行为由非线性介电常数来描述。由于样品与其环境之间复杂的电耦合,非线性介电常数测量面临诸多技术挑战。在此,我们描述了一种测量复非线性介电常数的技术,该技术规避了与其他方法相关的许多困难。我们通过测量可调谐薄膜高达40 GHz的非线性介电常数,并将我们的结果与一个唯象模型进行比较,来验证该技术。这些测量为深入了解皮秒时间尺度下非线性介电材料的动力学提供了依据。

相似文献

3
Material Design Strategy for Enhancement of Readback Signal Intensity in Ferroelectric Probe Data Storage.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):859-864. doi: 10.1109/TUFFC.2020.3006909. Epub 2021 Feb 25.
5
Mechanically controllable nonlinear dielectrics.机械可控非线性电介质
Sci Adv. 2020 Mar 6;6(10):eaaz3180. doi: 10.1126/sciadv.aaz3180. eCollection 2020 Mar.
7
Downscaling at submicrometer scale of the gap width of interdigitated Ba0.5Sr0.5TiO3 capacitors.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):247-54. doi: 10.1109/TUFFC.2014.006639.

本文引用的文献

1
Resonant domain-wall-enhanced tunable microwave ferroelectrics.共振畴壁增强可调谐微波铁电体。
Nature. 2018 Aug;560(7720):622-627. doi: 10.1038/s41586-018-0434-2. Epub 2018 Aug 20.
2
Light-Activated Gigahertz Ferroelectric Domain Dynamics.
Phys Rev Lett. 2018 Mar 2;120(9):096101. doi: 10.1103/PhysRevLett.120.096101.
3
Emergent chirality in the electric polarization texture of titanate superlattices.钛酸盐超晶格中电极化织构的突发手性。
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):915-920. doi: 10.1073/pnas.1711652115. Epub 2018 Jan 16.
9
A General Waveguide Circuit Theory.
J Res Natl Inst Stand Technol. 1992 Sep-Oct;97(5):533-562. doi: 10.6028/jres.097.024.
10
Ferroelectrics: Negative capacitance detected.铁电体:检测到负电容。
Nat Mater. 2015 Feb;14(2):137-9. doi: 10.1038/nmat4195.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验