Wang Xinran, Jacobs Diane, Salmon David P, Feldman Howard H, Edland Steven D
Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
Int J Stat Med Res. 2023 Feb 15;12:90-96. doi: 10.6000/1929-6029.2023.12.12. Epub 2023 Sep 7.
Cognitive composite scales constructed by combining existing neuropsychometric tests are seeing wide application as endpoints for clinical trials and cohort studies of Alzheimer's disease (AD) predementia conditions. Preclinical Alzheimer's Cognitive Composite (PACC) scales are composite scores calculated as the sum of the component test scores weighted by the reciprocal of their standard deviations at the baseline visit. Reciprocal standard deviation is an arbitrary weighting in this context, and may be an inefficient utilization of the data contained in the component measures. Mathematically derived optimal composite weighting is a promising alternative.
Sample size projections using standard power calculation formulas were used to describe the relative performance of component measures and their composites when used as endpoints for clinical trials. Power calculations were informed by (n=1,333) amnestic mild cognitive impaired participants in the National Alzheimer's Coordinating Center (NACC) Uniform Data Set.
A composite constructed using PACC reciprocal standard deviation weighting was both less sensitive to change than one of its component measures and less sensitive to change than its optimally weighted counterpart. In standard sample size calculations informed by NACC data, a clinical trial using the PACC weighting would require 38% more subjects than a composite calculated using optimal weighting.
These findings illustrate how reciprocal standard deviation weighting can result in inefficient cognitive composites, and underscore the importance of component weights to the performance of composite scales. In the future, optimal weighting parameters informed by accumulating clinical trial data may improve the efficiency of clinical trials in AD.
通过组合现有的神经心理测试构建的认知综合量表正被广泛用作阿尔茨海默病(AD)痴呆前期病症临床试验和队列研究的终点指标。临床前阿尔茨海默病认知综合量表(PACC)是在基线访视时,将各分量表测试得分与其标准差的倒数相乘后求和所得的综合得分。在此背景下,倒数标准差是一种任意加权方式,可能无法有效利用分量表测量中包含的数据。数学推导的最优综合加权是一种很有前景的替代方法。
使用标准效能计算公式进行样本量预测,以描述各分量表测量及其综合量表作为临床试验终点指标时的相对表现。效能计算依据的是国家阿尔茨海默病协调中心(NACC)统一数据集中(n = 1333)的遗忘型轻度认知障碍参与者。
使用PACC倒数标准差加权构建的综合量表对变化的敏感度低于其一个分量表测量,且低于其最优加权对应的综合量表。在依据NACC数据进行的标准样本量计算中,使用PACC加权的临床试验所需受试者比使用最优加权计算的综合量表多38%。
这些发现说明了倒数标准差加权如何导致认知综合量表效率低下,并强调了分量表权重对综合量表表现的重要性。未来,基于不断积累的临床试验数据得出的最优加权参数可能会提高AD临床试验的效率。