Neophytou Andreas, Sciortino Francesco
Department of Physics Sapienza-University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
J Chem Phys. 2024 Mar 21;160(11). doi: 10.1063/5.0197613.
We quantify the statistical properties of the potential energy landscape for a recently proposed machine learning coarse grained model for water, machine learning-bond-order potential [Chan et al., Nat. Commun. 10, 379 (2019)]. We find that the landscape can be accurately modeled as a Gaussian landscape at all densities. The resulting landscape-based free-energy expression accurately describes the model properties in a very wide range of temperatures and densities. The density dependence of the Gaussian landscape parameters [total number of inherent structures (ISs), characteristic IS energy scale, and variance of the IS energy distribution] predicts the presence of a liquid-liquid transition located close to P = 1750 ± 100 bars and T = 181.5 ± 1 K.
我们对最近提出的用于水的机器学习粗粒化模型——机器学习键序势[Chan等人,《自然通讯》10, 379 (2019)]的势能面的统计特性进行了量化。我们发现,在所有密度下,该势能面都可以精确地建模为高斯势能面。由此产生的基于势能面的自由能表达式在非常宽的温度和密度范围内准确地描述了模型特性。高斯势能面参数(固有结构总数、特征固有结构能量尺度和固有结构能量分布的方差)的密度依赖性预测了在P = 1750 ± 100巴和T = 181.5 ± 1 K附近存在液-液转变。