Department of Ophthalmology, IRCCS San Raffaele Hospital, Milan, Italy.
School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
Transl Vis Sci Technol. 2024 Mar 1;13(3):11. doi: 10.1167/tvst.13.3.11.
To compare the diagnostic performance of artificial intelligence (AI)-based diabetic retinopathy (DR) staging system across pseudocolor, simulated white light (SWL), and light-emitting diode (LED) camera imaging modalities.
A cross-sectional investigation involved patients with diabetes undergoing imaging with an iCare DRSplus confocal LED camera and an Optos confocal, ultra-widefield pseudocolor camera, with and without SWL. Macula-centered and optic nerve-centered 45 × 45-degree photographs were processed using EyeArt v2.1. Human graders established the ground truth (GT) for DR severity on dilated fundus exams. Sensitivity and weighted Cohen's weighted kappa (wκ) were calculated. An ordinal generalized linear mixed model identified factors influencing accurate DR staging.
The study included 362 eyes from 189 patients. The LED camera excelled in identifying sight-threatening DR stages (sensitivity = 0.83, specificity = 0.95 for proliferative DR) and had the highest agreement with the GT (wκ = 0.71). The addition of SWL to pseudocolor imaging resulted in decreased performance (sensitivity = 0.33, specificity = 0.98 for proliferative DR; wκ = 0.55). Peripheral lesions reduced the likelihood of being staged in the same or higher DR category by 80% (P < 0.001).
Pseudocolor and LED cameras, although proficient, demonstrated non-interchangeable performance, with the LED camera exhibiting superior accuracy in identifying advanced DR stages. These findings underscore the importance of implementing AI systems trained for ultra-widefield imaging, considering the impact of peripheral lesions on correct DR staging.
This study underscores the need for artificial intelligence-based systems specifically trained for ultra-widefield imaging in diabetic retinopathy assessment.
比较基于人工智能(AI)的糖尿病视网膜病变(DR)分期系统在伪彩、模拟白光(SWL)和发光二极管(LED)相机成像模式下的诊断性能。
一项横断面研究纳入了接受 iCare DRSplus 共焦 LED 相机和 Optos 共焦、超宽视野伪彩相机成像的糖尿病患者,包括有和无 SWL 的情况。使用 EyeArt v2.1 处理黄斑中心和视神经中心的 45×45 度照片。人类分级员根据散瞳眼底检查建立 DR 严重程度的真实(GT)。计算敏感性和加权 Cohen 的加权κ(wκ)。有序广义线性混合模型确定影响准确 DR 分期的因素。
该研究纳入了 189 例患者的 362 只眼。LED 相机在识别威胁视力的 DR 分期方面表现出色(增殖性 DR 的敏感性为 0.83,特异性为 0.95),与 GT 的一致性最高(wκ=0.71)。在伪彩成像中添加 SWL 会导致性能下降(增殖性 DR 的敏感性为 0.33,特异性为 0.98;wκ=0.55)。周边病变使分期处于相同或更高 DR 级别的可能性降低了 80%(P<0.001)。
尽管伪彩和 LED 相机表现出色,但性能不可互换,LED 相机在识别晚期 DR 分期方面具有更高的准确性。这些发现强调了在糖尿病视网膜病变评估中实施专门针对超宽视野成像的人工智能系统的重要性,同时考虑到周边病变对正确 DR 分期的影响。
翻译后版本的文本准确地传达了原文的含义,没有添加任何额外的信息或解释。