The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California.
Rocky Mountain Diabetes Center, Idaho Falls, Idaho.
JAMA Netw Open. 2021 Nov 1;4(11):e2134254. doi: 10.1001/jamanetworkopen.2021.34254.
Diabetic retinopathy (DR) is a leading cause of blindness in adults worldwide. Early detection and intervention can prevent blindness; however, many patients do not receive their recommended annual diabetic eye examinations, primarily owing to limited access.
To evaluate the safety and accuracy of an artificial intelligence (AI) system (the EyeArt Automated DR Detection System, version 2.1.0) in detecting both more-than-mild diabetic retinopathy (mtmDR) and vision-threatening diabetic retinopathy (vtDR).
DESIGN, SETTING, AND PARTICIPANTS: A prospective multicenter cross-sectional diagnostic study was preregistered (NCT03112005) and conducted from April 17, 2017, to May 30, 2018. A total of 942 individuals aged 18 years or older who had diabetes gave consent to participate at 15 primary care and eye care facilities. Data analysis was performed from February 14 to July 10, 2019.
Retinal imaging for the autonomous AI system and Early Treatment Diabetic Retinopathy Study (ETDRS) reference standard determination.
Primary outcome measures included the sensitivity and specificity of the AI system in identifying participants' eyes with mtmDR and/or vtDR by 2-field undilated fundus photography vs a rigorous clinical reference standard comprising reading center grading of 4 wide-field dilated images using the ETDRS severity scale. Secondary outcome measures included the evaluation of imageability, dilated-if-needed analysis, enrichment correction analysis, worst-case imputation, and safety outcomes.
Of 942 consenting individuals, 893 patients (1786 eyes) met the inclusion criteria and completed the study protocol. The population included 449 men (50.3%). Mean (SD) participant age was 53.9 (15.2) years (median, 56; range, 18-88 years), 655 were White (73.3%), and 206 had type 1 diabetes (23.1%). Sensitivity and specificity of the AI system were high in detecting mtmDR (sensitivity: 95.5%; 95% CI, 92.4%-98.5% and specificity: 85.0%; 95% CI, 82.6%-87.4%) and vtDR (sensitivity: 95.1%; 95% CI, 90.1%-100% and specificity: 89.0%; 95% CI, 87.0%-91.1%) without dilation. Imageability was high without dilation, with the AI system able to grade 87.4% (95% CI, 85.2%-89.6%) of the eyes with reading center grades. When eyes with ungradable results were dilated per the protocol, the imageability improved to 97.4% (95% CI, 96.4%-98.5%), with the sensitivity and specificity being similar. After correcting for enrichment, the mtmDR specificity increased to 87.8% (95% CI, 86.3%-89.5%) and the sensitivity remained similar; for vtDR, both sensitivity (97.0%; 95% CI, 91.2%-100%) and specificity (90.1%; 95% CI, 89.4%-91.5%) improved.
This prospective multicenter cross-sectional diagnostic study noted safety and accuracy with use of the EyeArt Automated DR Detection System in detecting both mtmDR and, for the first time, vtDR, without physician assistance. These findings suggest that improved access to accurate, reliable diabetic eye examinations may increase adherence to recommended annual screenings and allow for accelerated referral of patients identified as having vtDR.
重要性:糖尿病视网膜病变(DR)是全世界成年人致盲的主要原因。早期发现和干预可以预防失明;然而,许多患者没有接受他们建议的年度糖尿病眼病检查,主要是因为获得的途径有限。
目的:评估人工智能(AI)系统(EyeArt 自动 DR 检测系统,版本 2.1.0)在检测更严重的糖尿病视网膜病变(mtmDR)和威胁视力的糖尿病视网膜病变(vtDR)的安全性和准确性。
设计、地点和参与者:这是一项前瞻性的多中心横断面诊断研究,于 2017 年 4 月 17 日至 2018 年 5 月 30 日进行了预先注册(NCT03112005)。共有 942 名年龄在 18 岁及以上的患有糖尿病的人同意在 15 个初级保健和眼科护理机构参与。数据分析于 2019 年 2 月 14 日至 7 月 10 日进行。
干预措施:视网膜成像用于自主 AI 系统和早期治疗糖尿病视网膜病变研究(ETDRS)参考标准的确定。
主要结果和措施:主要结果指标包括通过 2 视野非散瞳眼底摄影,AI 系统在识别参与者具有 mtmDR 和/或 vtDR 的眼睛方面的敏感性和特异性,与包括使用 ETDRS 严重程度量表对 4 张广角散瞳图像进行阅读中心分级的严格临床参考标准进行比较。次要结果指标包括评估图像质量、需要散瞳的分析、富集校正分析、最坏情况推断和安全性结果。
结果:在 942 名同意参与的人中,893 名患者(1786 只眼睛)符合纳入标准并完成了研究方案。该人群包括 449 名男性(50.3%)。参与者的平均(标准差)年龄为 53.9(15.2)岁(中位数,56 岁;范围,18-88 岁),655 人为白人(73.3%),206 人为 1 型糖尿病(23.1%)。AI 系统在检测 mtmDR(敏感性:95.5%;95%置信区间,92.4%-98.5%和特异性:85.0%;95%置信区间,82.6%-87.4%)和 vtDR(敏感性:95.1%;95%置信区间,90.1%-100%和特异性:89.0%;95%置信区间,87.0%-91.1%)时具有较高的敏感性和特异性,无需散瞳。在无需散瞳的情况下,图像质量较高,AI 系统能够对阅读中心分级的 87.4%(95%置信区间,85.2%-89.6%)的眼睛进行分级。当根据协议对无分级结果的眼睛进行散瞳时,图像质量提高到 97.4%(95%置信区间,96.4%-98.5%),敏感性和特异性相似。在进行富集校正后,mtmDR 的特异性提高到 87.8%(95%置信区间,86.3%-89.5%),而敏感性保持不变;对于 vtDR,敏感性(97.0%;95%置信区间,91.2%-100%)和特异性(90.1%;95%置信区间,89.4%-91.5%)都有所提高。
结论和相关性:这项前瞻性多中心横断面诊断研究表明,EyeArt 自动 DR 检测系统在检测 mtmDR 方面具有安全性和准确性,并且首次在无需医生协助的情况下检测到威胁视力的糖尿病视网膜病变。这些发现表明,改善对准确、可靠的糖尿病眼病检查的可及性可能会提高对建议的年度筛查的依从性,并允许加速对被识别为患有威胁视力的糖尿病视网膜病变的患者的转诊。