Suppr超能文献

用于高效电化学水离解和脱氯的钴单原子反向氢溢流

Cobalt Single-Atom Reverse Hydrogen Spillover for Efficient Electrochemical Water Dissociation and Dechlorination.

作者信息

Zheng Qian, Xu Hengyue, Yao Yancai, Dai Jie, Wang Jiaxian, Hou Wei, Zhao Long, Zou Xingyue, Zhan Guangming, Wang Ruizhao, Wang Kaiyuan, Zhang Lizhi

机构信息

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China.

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, R. P., China.

出版信息

Angew Chem Int Ed Engl. 2024 May 6;63(19):e202401386. doi: 10.1002/anie.202401386. Epub 2024 Apr 4.

Abstract

Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co-TiO/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co-TiO/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h was 4.3 and 8.6 times more active than those of Pd/C (0.38 h) and Co-N-C (0.19 h), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.

摘要

高效地将水电解为原子氢(H*)并抑制H的复合,对于提高电化学脱氯中H的利用率至关重要,但目前受到缺乏可行电极的限制。在此,我们开发了一种整体式单原子电极,其中钴单原子锚定在泡沫钛的固有氧化层上(Co-TiO/Ti),通过利用单原子反向氢溢流效应,该电极可将水高效分解为H*,同时抑制H的复合。实验和理论计算表明,H可在泡沫钛的氧化层上快速生成,然后溢流到相邻的钴单原子上进行还原脱氯。以氯霉素作为概念验证,所得的Co-TiO/Ti整体式电极表现出前所未有的性能,在-1.0 V时脱氯率几乎达到100%,远优于传统的间接还原驱动的商业Pd/C(52%)和直接还原驱动的Co-N-C(44%)。此外,其脱氯速率常数为1.64 h,分别比Pd/C(0.38 h)和Co-N-C(0.19 h)的活性高4.3倍和8.6倍。我们的研究为合理设计与氢溢流相关的电催化剂提供了思路,以同时提高H*的生成、转移和利用效率,用于环境和能源应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验