Ophthalmology Unit, "Fondazione Policlinico Universitario A. Gemelli IRCCS", Rome, Italy.
Catholic University of "Sacro Cuore", Rome, Italy.
Retina. 2024 Aug 1;44(8):1360-1370. doi: 10.1097/IAE.0000000000004106.
Around 30% of nonexudative macular neovascularizations exudate within 2 years from diagnosis in patients with age-related macular degeneration. The aim of this study is to develop a deep learning classifier based on optical coherence tomography (OCT) and OCT angiography (OCTA) to identify nonexudative macular neovascularizations at risk of exudation.
Patients with age-related macular degeneration showing OCTA and fluorescein angiography-documented nonexudative macular neovascularization with a 2-year minimum imaging follow-up were retrospectively selected. Patients showing OCT B-scan-documented macular neovascularization exudation within the first 2 years formed the EX GROUP while the others formed the QU GROUP. ResNet-101, Inception-ResNet-v2, and DenseNet-201 were independently trained on OCTA and OCT B-scan images. Combinations of the six models were evaluated with major and soft voting techniques.
Eighty-nine eyes of 89 patients with a follow-up of 5.7 ± 1.5 years were recruited (35 EX GROUP and 54 QU GROUP). Inception-ResNet-v2 was the best performing among the three single convolutional neural networks. The major voting model resulting from the association of the three different convolutional neural networks resulted in an improvement of performance both for OCTA and OCT B-scan (both significantly higher than human graders' performance). The soft voting model resulting from the combination of OCTA and OCT B-scan-based major voting models showed a testing accuracy of 94.4%. Peripheral arcades and large vessels on OCTA en face imaging were more prevalent in the QU GROUP.
Artificial intelligence shows high performances in identifications of nonexudative macular neovascularizations at risk for exudation within the first 2 years of follow-up, allowing better customization of follow-up timing and avoiding treatment delay. Better results are obtained with the combination of OCTA and OCT B-scan image analysis.
在年龄相关性黄斑变性患者中,约有 30%的非渗出性黄斑新生血管在诊断后 2 年内出现渗出。本研究旨在开发一种基于光学相干断层扫描(OCT)和 OCT 血管造影(OCTA)的深度学习分类器,以识别有渗出风险的非渗出性黄斑新生血管。
回顾性选择经 OCTA 和荧光素血管造影记录的年龄相关性黄斑变性患者,有 2 年以上的最小影像学随访,发现 OCTA 记录的非渗出性黄斑新生血管,且在最初的 2 年内形成 EX 组,而其余的患者形成 QU 组。分别对 ResNet-101、Inception-ResNet-v2 和 DenseNet-201 进行 OCTA 和 OCT B 扫描图像的独立训练。采用主要投票和软投票技术评估 6 种模型的组合。
共纳入 89 例 89 只眼患者,随访时间为 5.7±1.5 年(35 例 EX 组,54 例 QU 组)。在三种单卷积神经网络中,Inception-ResNet-v2 的性能最好。三种不同卷积神经网络联合的主要投票模型对 OCTA 和 OCT B 扫描均有改善(均显著高于人工分级者的表现)。OCTA 和 OCT B 扫描基于主要投票模型的软投票模型的检测准确率为 94.4%。QU 组 OCTA 面成像中更常见的是周边弓状血管和大血管。
人工智能在识别有渗出风险的非渗出性黄斑新生血管方面表现出较高的性能,有助于更好地定制随访时间,避免治疗延误。OCTA 和 OCT B 扫描图像分析的结合可获得更好的结果。